
Daniel G. Graham Ph.D

COMPUTER SYSTEMS
AND ORGANIZATION

Sockets

1. Client-server model

2. HTTP protocol basic

3. TCP Client

4. Client-server example demo

5. System Calls

3

CLIENT SERVER MODEL

Linux Server

server
socket

Browser
Client

client
socket

Two types of sockets

4

CLIENT SERVER MODEL

Linux Server

server
socket

Browser
Client

client
socket

Two types of sockets

The network
is abstracted
From the
programmer

5

DNS: FINDING THE IP FOR A DOMAIN

Use dig to look up
IP address for a
particular website

6

GET /index HTTP/1.1\r\n

Host: www.bing.com\r\n

\r\n

HTTP/1.1 200 OK

--- Headers ---

--- Content ----

HTTP BASICS

REQUEST Response

http://www.bing.com/r/n

7

8

Let’s write a c program that will send an HTTP request to the Bing servers and get the index page.

NOW LET’S WRITE A PROGRAM

9

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define PORT 80
#define BUFFER_SIZE 4096
#define SERVER_IP “13.107.21.200”

int main() {
 int sock;
 struct sockaddr_in server;
 char message[BUFFER_SIZE], response[BUFFER_SIZE];

 // Create socket
 sock = socket(AF_INET, SOCK_STREAM, 0);

 // Prepare the sockaddr_in structure
 server.sin_addr.s_addr = inet_addr(SERVER_IP);

 server.sin_family = AF_INET;
 server.sin_port = htons(PORT);

 // Connect to the server
 connect(sock, (struct sockaddr *)&server, sizeof(server));

PART 1

Client vs Server:

Notice that we use
connect instead of
accept.

10

 // Create GET request
 snprintf(message, sizeof(message), "GET / HTTP/1.1\r\nHost: www.bing.com\r\n\r\n");

 // Send the message
 write(sock, message, strlen(message));

 // Receive the server's response
 read(sock, response, BUFFER_SIZE);

 printf("Server Response:\n%s", response);

 // Close the socket
 close(sock);

 return 0;
}

PART 2

11

DEMO OF THIS RUNNING

12

THE PROCESS

Operating
System

Your
Program

Software {
Socket

NIChardware {

Port 8080

A Browser
Window

Socket

Operating
System

NIC

Socket

13

OUR SERVER
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>

#define PORT 8080

int main() {
 int server_fd;
 struct sockaddr_in address;

 server_fd = socket(AF_INET, SOCK_STREAM, 0);
 address.sin_family = AF_INET;
 address.sin_addr.s_addr = INADDR_ANY;
 address.sin_port = htons(PORT);

 bind(server_fd, (struct sockaddr *)&address, sizeof(address));
 listen(server_fd, 10);
 int addrlen = sizeof(address);

 while (1) {
 int new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen);
 write(new_socket, "HTTP/1.1 200 OK\n", 16);
 write(new_socket, "Content-Type: text/html\n\n", 25);
 write(new_socket, "<html><body><h1>Hello, World!</h1></body></html>", 44);
 close(new_socket);

 }
 close(server_fd);
 return 0;

}

We have implemented both the client and server.

14

Socket()

bind()

listen()

accept()

read()

write()

close()

Socket()

connect()

write()

read()

close()

New file descriptor returned

What happens if
the client get to
connect a section of
code before get t

15

Socket()

bind()

listen()

accept()

read()

write()

close()

Socket()

connect()

write()

read()

close()

New file descriptor returned

Accept call blocks
until a client
connects

16

Socket()

bind()

listen()

accept()

read()

write()

close()

Socket()

connect()

write()

read()

close()

New file descriptor returned

What happens client
executes connect before
The server executes
listen?

17

WE HAVE BEEN USING FUNCTIONS LIKE

WRITE HOW DOES THAT GET IMPLEMENTED IN
ASSEMBLY?

write(new_socket, "HTTP/1.1 200 OK\n", 16);

18

WHAT DOES THIS
LOOK LIKE IN
ASSEMBLY?

#include <unistd.h>
#include <fcntl.h>

int main() {
 int fd;
 char *text = "CSO1";

 // Open a file for writing (create it if it doesn't exist)
 fd = open("output.txt", O_WRONLY | O_CREAT, 0644);

 // Write the string to the file
 write(fd, text, 4); // 4 is the number of bytes to write

 // Close the file
 close(fd);

 return 0;
}

Let’s look at this one.
Sadly it not simple a
call instruction to
function located in
fcntl

19

READING AND WRITING FILES AND THE
NETWORK IS A PRIVILEGED OPERATION

Network
IO

File
IO

Error
Detection

System Call Interface

Operating
System

User
Space

Your program

20

USER SPACE VS KERNEL SPACE LINUX
Kernel layout for MIPS chips

https://www.it.uu.se/education/cours
e/homepage/os/vt18/module-0/mips-
and-mars/mips-memory-layout/

The layout of the arm chips can be
found here.
https://www.kernel.org/doc/html/v5.
7/arm/memory.html

https://www.it.uu.se/education/course/homepage/os/vt18/module-0/mips-and-mars/mips-memory-layout/
https://www.it.uu.se/education/course/homepage/os/vt18/module-0/mips-and-mars/mips-memory-layout/
https://www.it.uu.se/education/course/homepage/os/vt18/module-0/mips-and-mars/mips-memory-layout/
https://www.kernel.org/doc/html/v5.7/arm/memory.html
https://www.kernel.org/doc/html/v5.7/arm/memory.html

21

SYSTEM CALL CALLING CONVENTION
1.Register Usage for Arguments:

1. %rax: System call number. Each system call has a unique number that you place in
this register to tell the kernel which system call you're making.

2. %rdi, %rsi, %rdx, %r10, %r8, %r9: Used for passing up to six arguments to system
calls. %rdi is for the first argument, %rsi for the second, and so on. If a system call
needs more than six arguments, a pointer to a block containing the arguments is
passed as one of these registers.

2.Making the System Call:
1. The syscall instruction is used to switch to kernel mode and invoke the system call.

The kernel examines the value in %rax and understands which system call is being
requested.

3.Return Value:
1. After the system call, the return value is placed in %rax. This value typically

indicates success or an error code.

22

THING ABOUT HOW YOU IMPLEMENT THE
WRITE SYSTEM CALL TO STDOUT

1.Register Usage for Arguments:
1. %rax: System call number. Each system call has a unique number that you place in

this register to tell the kernel which system call you're making.
2. %rdi, %rsi, %rdx, %r10, %r8, %r9: Used for passing up to six arguments to system

calls. %rdi is for the first argument, %rsi for the second, and so on. If a system call
needs more than six arguments, a pointer to a block containing the arguments is
passed as one of these registers.

2.Making the System Call:
1. The syscall instruction is used to switch to kernel mode and invoke the system call.

The kernel examines the value in %rax and understands which system call is being
requested.

3.Return Value:
1. After the system call, the return value is placed in %rax. This value typically

indicates success or an error code.

write(1, message, message_length);

23

.global _start

.text
_start:
 # write(1, message, 18)
 mov $1, %rax ; syscall number for write (1)
 mov $1, %rdi ; file descriptor 1 (stdout)
 lea message(%rip), %rsi ; load the address of the message
 mov $18, %rdx ; message length (18 bytes)
 syscall ; perform the system call

.section .rodata ; Read-only data section
message: ; Label for the message
 .ascii "Computer Systems 1" ;

SYSTEM CALL CALLING CONVENTION

24

Linux github
repo.

https://github.c
om/torvalds/linu
x/blob/v4.17/arc
h/x86/entry/sysc
alls/syscall_64.tb
l

WHERE CAN I FIND THE SYSTEM CALL NUMBERS

25

SYSTEM CALLS

System Call Interface

User space

Call # Function
pointer

0 read

1 write

2 open

3 close

open()
 implementation of open
 file descriptor setup etc.

 return

int main() {
 int fd;
 char *text = "CSO1";

 // Open a file for writing (create it if it doesn't exist)
 fd = open("output.txt", O_WRONLY | O_CREAT, 0644);

Returns file descriptor

Kernel space

26

WHAT DOES THE FOLLOWING ASSEMBLY DO?

.global _start

.text
_start:

 # What does this snippet of assembley do?
 mov $3, %rax ;
 mov $1, %rdi ;
 syscall ;

Call # Function
pointer

0 read

1 write

2 open

3 close

A. Write Perror
B. Write stdout
C. Open stdout
D. Open Perror
E. Read from Perror
F. Close Perror
G. Read stdout
H. Close stdout
I. Read stdin
J. Close std in

27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

