
Daniel G. Graham Ph.D

COMPUTER SYSTEMS
AND ORGANIZATION
Generic Swap, Memcmp

1. Syscall Continued

2. Being careful with C functions fscanf,
example

3. There are some function you should
never use.

4. Generic Swap

5. Memcp, and other mem operations

6. Memory Error Puzzle strsep

3

USER SPACE VS KERNEL SPACE LINUX
Kernel layout for MIPS chips

https://www.it.uu.se/education/cours
e/homepage/os/vt18/module-0/mips-
and-mars/mips-memory-layout/

The layout of the arm chips can be
found here.
https://www.kernel.org/doc/html/v5.
7/arm/memory.html

https://www.it.uu.se/education/course/homepage/os/vt18/module-0/mips-and-mars/mips-memory-layout/
https://www.it.uu.se/education/course/homepage/os/vt18/module-0/mips-and-mars/mips-memory-layout/
https://www.it.uu.se/education/course/homepage/os/vt18/module-0/mips-and-mars/mips-memory-layout/
https://www.kernel.org/doc/html/v5.7/arm/memory.html
https://www.kernel.org/doc/html/v5.7/arm/memory.html

4

BUT REMEMBER OUR GOAL IS TO BE ABLE
REASON FROM FIRST PRINCIPLES ABOUT THIS:

#include <stdio.h>

int main(){

 printf(“Hello World !\n”);

}

Not quite there yet.
Let’s think about a
simpler example.

5

#include <stdio.h>

int main(){

 putchar(65); //putchar takes int

 //A is 65 in decimal

}

• How is this implemented?

• Yes it calls the putchar function implemented
in stdio.c.

• But what assembly instructions eventually get
run?

• Notice we didn’t print the new line char
(Important!!)

WHAT ABOUT THIS

6

#include <stdio.h>

int main(){

 putchar(65); //putchar takes int

 //A is 65 in decimal

 putchar(10);//New line \n

}

• How is this implemented?

• Yes it calls the putchar function implemented
in stdio.c.

• But what assembly instructions eventually get
run?

• Now we’ve added new line char print

WHAT ABOUT THIS

7

HERE IS
SOME

ASSEMBLY
THAT PRINTS

A

8

So many questions.
What is a file descriptor?
Why are we moving 1 into rax?
What is syscall?
What is a system call number?

Let’s start with: What
is a file descriptor?

9

SYSTEM CALL CALLING CONVENTION
1.Register Usage for Arguments:

1. %rax: System call number. Each system call has a unique number that you place in
this register to tell the kernel which system call you're making.

2. %rdi, %rsi, %rdx, %r10, %r8, %r9: Used for passing up to six arguments to system
calls. %rdi is for the first argument, %rsi for the second, and so on. If a system call
needs more than six arguments, a pointer to a block containing the arguments is
passed as one of these registers.

2.Making the System Call:
1. The syscall instruction is used to switch to kernel mode and invoke the system call.

The kernel examines the value in %rax and understands which system call is being
requested.

3.Return Value:
1. After the system call, the return value is placed in %rax. This value typically

indicates success or an error code.

10

THING ABOUT HOW YOU IMPLEMENT THE
WRITE SYSTEM CALL TO STDOUT

1.Register Usage for Arguments:
1. %rax: System call number. Each system call has a unique number that you place in

this register to tell the kernel which system call you're making.
2. %rdi, %rsi, %rdx, %r10, %r8, %r9: Used for passing up to six arguments to system

calls. %rdi is for the first argument, %rsi for the second, and so on. If a system call
needs more than six arguments, a pointer to a block containing the arguments is
passed as one of these registers.

2.Making the System Call:
1. The syscall instruction is used to switch to kernel mode and invoke the system call.

The kernel examines the value in %rax and understands which system call is being
requested.

3.Return Value:
1. After the system call, the return value is placed in %rax. This value typically

indicates success or an error code.

write(1, message, message_length);

11

.global _start

.text
_start:
 # write(1, message, 18)
 mov $1, %rax ; syscall number for write (1)
 mov $1, %rdi ; file descriptor 1 (stdout)
 lea message(%rip), %rsi ; load the address of the message
 mov $18, %rdx ; message length (18 bytes)
 syscall ; perform the system call

.section .rodata ; Read-only data section
message: ; Label for the message
 .ascii "Computer Systems 1" ;

SYSTEM CALL CALLING CONVENTION

12

Linux github
repo.

https://github.c
om/torvalds/linu
x/blob/v4.17/arc
h/x86/entry/sysc
alls/syscall_64.tb
l

WHERE CAN I FIND THE SYSTEM CALL NUMBERS

13

SYSTEM CALLS

System Call Interface

User space

Call # Function
pointer

0 read

1 write

2 open

3 close

open()
 implementation of open
 file descriptor setup etc.

 return

int main() {
 int fd;
 char *text = "CSO1";

 // Open a file for writing (create it if it doesn't exist)
 fd = open("output.txt", O_WRONLY | O_CREAT, 0644);

Returns file descriptor

Kernel space

14

WHAT DOES THE FOLLOWING ASSEMBLY DO?

.global _start

.text
_start:

 # What does this snippet of assembley do?
 mov $3, %rax ;
 mov $1, %rdi ;
 syscall ;

Call # Function
pointer

0 read

1 write

2 open

3 close

A. Write Perror
B. Write stdout
C. Open stdout
D. Open Perror
E. Read from Perror
F. Close Perror
G. Read stdout
H. Close stdout
I. Read stdin
J. Close std in

15

A SIMPLE PRINT EXAMPLE

int printf(const char *format, ...);

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char cs_array[] = “C.S.O is fun”;
 printf(“%s”, cs_array);
 printf(“\n”);

}

What gets printed?
C.S.O is fun

16

Let’s start by looking at fscanf

SOMETIMES C FUNCTIONS AREN’T INTUITIVE

int fscanf(FILE *stream, const char *format, ...);

17

WHAT DO WE THINK THE FOLLOWING SNIPPET
OF CODE DOES

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char line[255];
 FILE *fptr = fopen(“haiku.txt”, “r”);
 fscanf(fptr, “%s”, line); // What does line contain?
 printf(“%s”, line); // What does this line print?
 print(“\n”);

}

C.S.O. is fun
Knowledge blooms as the end looms
It is almost done

haiku.txt

18

C.S.O. is fun
Knowledge blooms as the end looms
It is almost done

haiku.txt
Wait what it just prints C.S.O
Why….?

19

LET’S CHECK THE DOCUMENTATION

Different behavior
for fscanf
And printf

2
0

R
ea

d
 t

h
e

d
o

cu
m

en
ta

ti
o

n
 c

lo
se

ly
 ☺

Th
at

’s
 it

. C
 w

as
 fi

rs
t s

o
 le

t’
s

le
ar

n
 t

o
 lo

ve
 a

ll
it

s
q

u
ir

ks
 a

n
d

 fe
at

u
re

s
an

d
 t

h
en

 p
ro

gr
am

 in
 R

U
ST

 ☺

G
EN

ER
A

L
G

U
ID

A
N

C
E

O
N

 C
H

O
O

SI
N

G
 F

U
N

C
TI

O
N

S

21

SWAP#include <stdio.h>

void swapShorts(short *x, short *y) {
 short temp = *x;
 *x = *y;
 *y = temp;
}

int main() {
 short a = 10, b = 20;
 printf("Before swapping: a = %d, b = %d\n", a, b);

 swapShorts(&a, &b);

 printf("After swapping: a = %d, b = %d\n", a, b);

 return 0;
}

22

SWAP TWO STRINGS

How could you do this?

23

SWAP TWO STRINGS

How could you do this?
Just swap the value of the pointers ;)

0xA0a

b 0xB0

“Hello”

“Bot”

Stored on the heap

char* a = strdup(“Hello”);
char* b = strdup(“Bot”);

24

SWAP TWO STRINGS

How could you do this?
Just swap the value of the pointers ;)

0xB0a

b 0xA0

“Hello”

“Bot”

Stored on the heap

char* a = strdup(“Hello”);
char* b = strdup(“Bot”);

25

SWAP STRINGS
#include <stdio.h>

void swapStrings(char **str1, char **str2) {
 char *temp = *str1;
 *str1 = *str2;
 *str2 = temp;
}

int main() {
 char *a = "Hello";
 char *b = "Bot";

 printf("Before swapping: a = %s, b = %s\n", a, b);
 swapStrings(&a, &b);
 printf("After swapping: a = %s, b = %s\n", a, b);

 return 0;
}

26

GENERIC SWAP

Could we write a generic that could pass any two pointers and then
have the memory pointer swap

27

MEMCPY

memcpy is a function in the C standard library, defined in the header file
<string.h>. It is used to copy a specified number of bytes from one memory
location to another. However, we should avoid using it in overlapping regions as it
will result in undefined behavior that could possibly break our code.

void *memcpy(void *dest, const void *src, size_t n);

•dest: Pointer to the destination array where
the content is to be copied.
•src: Pointer to the source of data to be copied.
•n: Number of bytes to copy.
•Returns a pointer to dest.

28

#include <stdio.h>
#include <string.h>

int main() {
 char src[50] = "This is the source string.";
 char dest[50];

 // Copy src to dest
 // Added to make we get the null terminator
 memcpy(dest, src, strlen(src) + 1);
 printf("dest = \"%s\"\n", dest);

 return 0;
}

MEMCPY EXAMPLE

29

MEMMOVE

It is similar to memcpy, but the key difference is that memmove is safe to use when the
source and destination memory regions overlap. This is because memmove takes care of
the possibility of overlapping regions by ensuring that the copying of bytes does not
interfere with the original content in the case of overlap.

void *memmove(void *dest, const void *src, size_t n);

30

MEMMOVE

1 2 3 4 5 6

3 4 5 65 6

31

TALK TO YOUR NEIGHBOR
#include <stdio.h>
#include <string.h>

int main() {
 char str[50] = "Hello, World!";

 printf("Original string: %s\n", str);
 memmove(str + 7, str + 0, 5);

 printf("After memmove: %s\n", str);

 return 0;
} What get’s printed after memmove?

32

TALK TO YOUR NEIGHBOR
#include <stdio.h>
#include <string.h>

int main() {
 char str[50] = "Hello, World!";

 printf("Original string: %s\n", str);
 memmove(str + 7, str + 0, 5);

 printf("After memmove: %s\n", str);

 return 0;
}

What get’s printed after memmove?

Answer: Hello, Hello!

33

BACK TO GENERIC SWAP

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to the location of data1
 copy data1 in temporary storage to the location of data2
 }

34

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr) {
 store a copy of data1 in temporary storage
 copy data2 to the location of data1
 copy data1 in temporary storage to the location of data2
 }

35

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr) {
 store a copy of data1 in temporary storage
 copy data2 to the location of data1
 copy data1 in temporary storage to the location of data2
 }

36

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr) {
 store a copy of data1 in temporary storage
 copy data2 to the location of data1
 copy data1 in temporary storage to the location of data2
 }

If we don’t know the data type, we don’t know how many bytes it is.
Let’s take that as another parameter.

37

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 store a copy of data1 in temporary storage
 copy data2 to the location of data1
 copy data1 in temporary storage to the location of data2
 }

If we don’t know the data type, we don’t know how many bytes it is.
Let’s take that as another parameter.

38

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 //store a copy of data1 in temporary storage
 void *temp = malloc(nbytes);
 memcpy(temp, data1ptr, nbytes);
 copy data2 to the location of data1
 copy data1 in temporary storage to the location of data2
 }

39

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 void *temp = malloc(nbytes);
 memcpy(temp, data1ptr, nbytes);
 copy data2 to the location of data1
 copy data1 in temporary storage to the location of data2
 }

40

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 void *temp = malloc(nbytes);
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);
 copy data1 in temporary storage to the location of data2
 }

41

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 void *temp = malloc(nbytes);
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);
 copy data1 in temporary storage to the location of data2
 }

42

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 void *temp = malloc(nbytes);
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);
 memcpy(data2ptr, temp, nbytes);
}

Just one more thing.

43

BACK TO GENERIC SWAP

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 void *temp = malloc(nbytes);
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);
 memcpy(data2ptr, temp, nbytes);
 free(temp);
}

44

PUZZLE 1

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(){
 int *x = (int *) malloc(40*sizeof(int));
 x+= 5;
 free(x);
}

45

PUZZLE 1

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(){
 int *x = (int *) malloc(40*sizeof(int));
 x+= 5;
 free(x);
}

Not the address associated with the
initial malloc.

46

ANOTHER FUN EXAMPLE

char *strsep(char **stringp, const char *delim);

delim is a string that
contains multiple
delimiters

stringp is a pointer to
a pointer to the
string that we want
to parse

47

STRSEP
char *strsep(char **stringp, const char *delim);

48

STRSEP

#include <stdio.h>
#include <string.h>

int main() {
 char string[] = "a,b,c,d"; // The string to be tokenized
 char *token;
 char *rest = string;

 while ((token = strsep(&rest, ",")) != NULL) {
 printf("%s\n", token);
 }

 return 0;
}

Draw visual.

49

PUZZLE 2 DOES THIS CRASH OR NOT?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main() {

 char *string = strdup("a,b,c,d”); // stored on the heap
 char *token;
 token = strsep(&string, ",");
 printf("%s\n", token);
 free(string);
 return 0;

}

50

PUZZLE 2 DOES THIS CRASH OR NOT?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main() {

 char *string = strdup("a,b,c,d”); // stored on the heap
 char *token;
 token = strsep(&string, ",");
 printf("%s\n", token);
 free(string);
 return 0;

}

51

PUZZLE 2 DOES THIS CRASH OR NOT?

52

PUZZLE 2 DOES THIS CRASH OR NOT?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main() {
 char *string = strdup("a,b,c,d”); // stored on the heap
 char *token;

 token = strsep(&string, ",");
 printf("%s\n", token);
 free(string);
 return 0;
} Crashed because the string

pointer is updated to a new
address. It is not the original
malloced address.

53

PUZZLE 2 (HERE'S A FIX)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main() {
 char *string = strdup("a,b,c,d”); // stored on the heap
 char *token;
 char *rest = string;

 token = strsep(&rest, ",");
 printf("%s\n", token);
 free(string);
 return 0;
}

Think about "rest" as if it was "temp".
By using a "copy" of string and using it
as the temporary value to operate on,
we can keep the address of string the
same as it was before as it is left
unmodified. We would be able to
successfully free it in this way.

54

https://web.stanford.edu/class/archive/cs/cs107/cs10
7.1242/lectures/12/Lecture12.pdf

REFERENCES AND CREDIT

https://web.stanford.edu/class/archive/cs/cs107/cs107.1242/lectures/12/Lecture12.pdf
https://web.stanford.edu/class/archive/cs/cs107/cs107.1242/lectures/12/Lecture12.pdf

55

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

