COMPUTER SYSTEMS
AND ORGANIZATION

Allocators and Header Files

Daniel G. Graham Ph.D

il UNAERSTY | ENGINEERING

Contents

N o s W RE

Locations in memory (More Details)
Malloc Examples

Allocators Implementing Malloc
Creating our own C library

Header files

Files 10 operations

Memory Errors Next time.

STACK VS HEAP

Stack

Heap

Statics

Literals

Text

Permissions

Read/Write

Read/Write

Read/Write
Read

Execute

Contents

Local vars etc

Dynamic
structures

Global Vars

String Literals

Instructions

Managed by

Compiler

Programmer:
malloc/free

Compiler

Compiler

Compiler

filli UNRERSITY | ENGINEERING

SCANF (INPUT)

int scanf(const char *format, ...)

1. ... Indicates that the function accepts variable length arguments
2. char *: This contains the format specifiers

filli UNRERSITY | ENGINEERING

SCANF EXAMPLES

int a;

printf("Enter a number: ");
scanf("%d", &a);

filli UNRERSITY | ENGINEERING

SCANF EXAMPLES

int a;
int b;

printf("Enter two numbers ");
scanf("%d %d", &a, &b);

filli UNRERSITY | ENGINEERING

DON’T DO THIS

##include <stdio.h>
##tinclude <stdlib.h>
#tdefine MAXN 15213

Draw the stack.

int array[MAXN]

int main(){
int i, n;
scanf("%d, &n);
If (n > MAXN){
app_error("Input file too big");
}

for(i = 0; i <n; i++){
scanf("%d". &array[i]);
}

filli UNRERSITY | ENGINEERING

DO THIS INSTEAD

#tinclude <stdio.h>
#tinclude <stdlib.h>

int main(){
int *array, i, n;
scanf("%d, &n);
array = (int *) malloc(n*sizeof(int));
for(1 = 0; 1 <n; i++){
scanf("%d". &array[i]);
}

filli UNRERSITY | ENGINEERING

WE’LL ASSUME WORD ADDRESS NOT BYTE

ADDRESS
\ Y J % ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

* Memory is word addressed.
* Words are int-sized.

filli UNRERSITY | ENGINEERING

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

filli UNRERSITY | ENGINEERING

LET’S TALK ABOUT HOW WE COULD BUILD AND
ALLOCATOR

Allocators
— Can’t control the number or size of allocated blocks
— Must allocate blocks from free memory

— Can manipulate and modify only free memory
— Can’t move the allocated blocks once they aremalloc’d

filli UNRERSITY | ENGINEERING

ALSO, WANT TO REDUCE FRAGMENTATION

malloc (4)

pl

p3 = malloc(6)

malloc (6) Oops! (what would happen now?)
Malloc turns NULL (No space left &)

p4

filli UNRERSITY | ENGINEERING

IMPLEMENTATION CHALLENGES

1. How do we know how much memory to free given just a pointer?
2. How do we keep track of the free blocks?

3. How do we pick a block to use for allocation?
1. BestFit
2. Next Fit

1. Sadly both still have fragmentation.

filli UNRERSITY | ENGINEERING

KNOWING HOW MUCH TO FREE

Keep the length of a block in the word preceding the block.
This word is often called the header field or header

pO = malloc(4) 5

R\

block size payload

free (p0)

filli UNRERSITY | ENGINEERING

KEEP TRACK OF FREE BLOCKS

Method 1: Implicit list using length—Ilinks all blocks

filli UNRERSITY | ENGINEERING

GNU nano 6.3

ffinclude <string.h>
#include <stdio.h>

void encrypt(char * input_string, const char * key){
int length_of_key = strlen(key);
for (int 1 = 9; i < strlen(input_string); i++){
input_string[i] = input_string[i] * key[i%length_of_key]l;

}

fil ONERSTY | ENGINEERING
16

HEADER FILES

= [/ for files in system/default directory

#tinclude <filename.h> =

#include "filename.h"

L // for files in same directory as source file

fiil URNVERSITY | pNGINEERING

WHY DO HEADER FILES EXIST?

You can think of header files as an API that provides the method
definition that tells us so we can use a library

filli UNRERSITY | ENGINEERING

EXAMPLE HEADER FILES

#ifndef EXAMPLE_HEADER_FILE
#define EXAMPLE_HEADER_FILE

————— Contents of Header file.

#tendif

Header Guard

filli UNRERSITY | ENGINEERING

EXAMPLE HEADER FILES

#ifndef EXAMPLE_HEADER_FILE
#define EXAMPLE_HEADER_FILE

/** Encrypts a string using a key

@param input _string String to be encrypted
@part key key to use for encryption.

**/

void encrypt(char * input_string, const char * key);

#tendif

filli UNRERSITY | ENGINEERING

USING THE LIBRARY

GNU nano 6.3 main.c Modified
#include <stdio.h>
#include <string.h>
#include "crypto.h"

int main(){
char * message = strdup("A secure, connected and intelligent future");
char * key = strdup("Love");
encrypt(message, key);

51 fil ONERSTY | ENGINEERING

FILE 1O

FILE *fopen(const char * filename, const char * mode);

filli UNRERSITY | ENGINEERING

r Opens an existing text file for reading purposes.

F I I_E I O Opens a text file for writing. If it does not exist,
then a new file is created. Here your program
will start writing content from the beginning of
the file.

Opens a text file for writing in appending mode.
If it does not exist, then a new file is created.
Here your program will start appending content
in the existing file content.

r+ Opens a text file for both reading and writing.

Opens a text file for both reading and writing. It
w+ first truncates the file to zero length if it exists,
otherwise creates a file if it does not exist.

Opens a text file for both reading and writing. It
creates the file if it does not exist. The reading
will start from the beginning but writing can
only be appended.

a+t

filli UNRERSITY | ENGINEERING

WHAT IS THIS FILE TYPE

|

FILE *fopen(const char * filename, const char * mode);

Let’s look at the header file. (It is open source)

Notice that NULL is defined.

https://www.gnu.org/software/m68hcll/examples/stdio 8h-source.html

filli UNRERSITY | ENGINEERING

https://www.gnu.org/software/m68hc11/examples/stdio_8h-source.html

FILE 1O

int fclose(FILE *fp);

filli UNRERSITY | ENGINEERING

#include <stdio.h>

FIO EXAMPLE

#include <stdlib.h>

int main()

{

// file pointer variable to store the value returned by
// fopen
FILE* fptr;

// opening the file in read mode
fptr = fopen("filename.txt", "r");

// checking if the file is opened successfully
if (fptr == NULL) {
printf("The file is not opened. The program will "
"now exit.");
exit(0);
}

return 0;

VN
i U{R}}/'ERSITY

RGINIA

ENGINEERING

fiil URNVERSITY | pNGINEERING

27

