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1. Locations in memory (More Details)
2. Malloc Examples 
3. Allocators Implementing Malloc
4. Creating our own C library
5. Header files 
6. Files IO operations
7.  Memory Errors Next time. 
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STACK VS HEAP
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SCANF (INPUT) 

int scanf(const char *format, ...)

1. ... Indicates that the function accepts variable length arguments
2. char *: This contains the format specifiers
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SCANF EXAMPLES 

int a;

printf("Enter a number: ");
scanf("%d", &a);
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SCANF EXAMPLES 

int a;
int b;

printf("Enter two numbers ");
scanf("%d %d", &a, &b);
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DON’T DO THIS
#include <stdio.h>
#include <stdlib.h>
#define MAXN 15213

int array[MAXN]

int main(){
   int i, n;
   scanf("%d, &n);
   If (n > MAXN){
     app_error("Input file too big");
   }
   for( i = 0; i <n; i++){
    scanf("%d". &array[i]);
   }    

}

Draw the stack.
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DO THIS INSTEAD
#include <stdio.h>
#include <stdlib.h>

int main(){
   int *array, i, n;
   scanf("%d, &n);
   array =  (int *) malloc(n*sizeof(int));
   for( i = 0; i <n; i++){
    scanf("%d". &array[i]);
   }    
}
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WE’LL ASSUME WORD ADDRESS NOT BYTE 
ADDRESS

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word• Memory is word addressed.
• Words are int-sized.
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p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Allocators
– Can’t control the number or size of allocated blocks
– Must allocate blocks from free memory
– Can manipulate and modify only free memory
– Can’t move the allocated blocks once they are malloc’d

LET’S TALK ABOUT HOW WE COULD BUILD AND 
ALLOCATOR
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ALSO, WANT TO REDUCE FRAGMENTATION

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)
Malloc turns NULL (No space left L)
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IMPLEMENTATION CHALLENGES
1. How do we know how much memory to free given just a pointer?

2. How do we keep track of the free blocks?

3. How do we pick a block to use for allocation?
1. Best Fit 
2. Next Fit

1. Sadly both still have fragmentation.  
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KNOWING HOW MUCH TO FREE 

p0 = malloc(4)

p0

free(p0)

block size payload

5

Keep the length of a block in the word preceding the block.
This word is often called the header field or header
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KEEP TRACK OF FREE BLOCKS

5 4 26

5 4 26

Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers
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CREATING A LIBRARY FILE IN C 



17

HEADER FILES

#include <filename.h>

#include "filename.h"

// for files in system/default directory

// for files in same directory as source file
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WHY DO HEADER FILES EXIST?

You can think of header files as an API that provides the method 
definition that tells us so we can use a library 
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EXAMPLE HEADER FILES 
#ifndef EXAMPLE_HEADER_FILE
#define EXAMPLE_HEADER_FILE

----- Contents of Header file. 

#endif 

Header Guard
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EXAMPLE HEADER FILES 
#ifndef EXAMPLE_HEADER_FILE
#define EXAMPLE_HEADER_FILE

/** Encrypts a string using a key
@param input_string String to be encrypted
@part key key to use for encryption. 
**/
#include<string.h>                       
 void encrypt(char * input_string, const char * key );

#endif 
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USING THE LIBRARY
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FILE IO 

FILE *fopen( const char * filename, const char * mode );
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FILE IO 
r Opens an existing text file for reading purposes.

w

Opens a text file for writing. If it does not exist, 
then a new file is created. Here your program 
will start writing content from the beginning of 
the file.

a

Opens a text file for writing in appending mode. 
If it does not exist, then a new file is created. 
Here your program will start appending content 
in the existing file content.

r+ Opens a text file for both reading and writing.

w+
Opens a text file for both reading and writing. It 
first truncates the file to zero length if it exists, 
otherwise creates a file if it does not exist.

a+

Opens a text file for both reading and writing. It 
creates the file if it does not exist. The reading 
will start from the beginning but writing can 
only be appended.
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WHAT IS THIS FILE TYPE

FILE *fopen( const char * filename, const char * mode );

Let’s look at the header file. (It is open source) 

Notice that NULL is defined. 

https://www.gnu.org/software/m68hc11/examples/stdio_8h-source.html 

https://www.gnu.org/software/m68hc11/examples/stdio_8h-source.html
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FILE IO

int fclose( FILE *fp );
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FIO EXAMPLE#include <stdio.h>
#include <stdlib.h>

int main()
{

// file pointer variable to store the value returned by
// fopen
FILE* fptr;

// opening the file in read mode
fptr = fopen("filename.txt", "r");

// checking if the file is opened successfully
if (fptr == NULL) {

printf("The file is not opened. The program will "
"now exit.");

exit(0);
}

return 0;
}
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