
Daniel G. Graham Ph.D

COMPUTER SYSTEMS 
AND ORGANIZATION 

Allocators and Header Files



1. Locations in memory (More Details)
2. Malloc Examples 
3. Allocators Implementing Malloc
4. Creating our own C library
5. Header files 
6. Files IO operations
7.  Memory Errors Next time. 



3

STACK VS HEAP

Stack

Heap

Statics

Literals

Text

Permissions Contents Managed by

Read/Write Local vars etc Compiler

Read/Write Dynamic 
structures

Programmer: 
malloc/free 

Read/Write Global Vars Compiler

Read

Execute

String Literals Compiler

Instructions Compiler



4

SCANF (INPUT) 

int scanf(const char *format, ...)

1. ... Indicates that the function accepts variable length arguments
2. char *: This contains the format specifiers



5

SCANF EXAMPLES 

int a;

printf("Enter a number: ");
scanf("%d", &a);



6

SCANF EXAMPLES 

int a;
int b;

printf("Enter two numbers ");
scanf("%d %d", &a, &b);



7

DON’T DO THIS
#include <stdio.h>
#include <stdlib.h>
#define MAXN 15213

int array[MAXN]

int main(){
   int i, n;
   scanf("%d, &n);
   If (n > MAXN){
     app_error("Input file too big");
   }
   for( i = 0; i <n; i++){
    scanf("%d". &array[i]);
   }    

}

Draw the stack.



8

DO THIS INSTEAD
#include <stdio.h>
#include <stdlib.h>

int main(){
   int *array, i, n;
   scanf("%d, &n);
   array =  (int *) malloc(n*sizeof(int));
   for( i = 0; i <n; i++){
    scanf("%d". &array[i]);
   }    
}



9

WE’LL ASSUME WORD ADDRESS NOT BYTE 
ADDRESS

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word• Memory is word addressed.
• Words are int-sized.



10

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)



11

Allocators
– Can’t control the number or size of allocated blocks
– Must allocate blocks from free memory
– Can manipulate and modify only free memory
– Can’t move the allocated blocks once they are malloc’d

LET’S TALK ABOUT HOW WE COULD BUILD AND 
ALLOCATOR



12

ALSO, WANT TO REDUCE FRAGMENTATION

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)
Malloc turns NULL (No space left L)



13

IMPLEMENTATION CHALLENGES
1. How do we know how much memory to free given just a pointer?

2. How do we keep track of the free blocks?

3. How do we pick a block to use for allocation?
1. Best Fit 
2. Next Fit

1. Sadly both still have fragmentation.  



14

KNOWING HOW MUCH TO FREE 

p0 = malloc(4)

p0

free(p0)

block size payload

5

Keep the length of a block in the word preceding the block.
This word is often called the header field or header



15

KEEP TRACK OF FREE BLOCKS

5 4 26

5 4 26

Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers



16

CREATING A LIBRARY FILE IN C 



17

HEADER FILES

#include <filename.h>

#include "filename.h"

// for files in system/default directory

// for files in same directory as source file



18

WHY DO HEADER FILES EXIST?

You can think of header files as an API that provides the method 
definition that tells us so we can use a library 



19

EXAMPLE HEADER FILES 
#ifndef EXAMPLE_HEADER_FILE
#define EXAMPLE_HEADER_FILE

----- Contents of Header file. 

#endif 

Header Guard



20

EXAMPLE HEADER FILES 
#ifndef EXAMPLE_HEADER_FILE
#define EXAMPLE_HEADER_FILE

/** Encrypts a string using a key
@param input_string String to be encrypted
@part key key to use for encryption. 
**/
#include<string.h>                       
 void encrypt(char * input_string, const char * key );

#endif 



21

USING THE LIBRARY



22

FILE IO 

FILE *fopen( const char * filename, const char * mode );



23

FILE IO 
r Opens an existing text file for reading purposes.

w

Opens a text file for writing. If it does not exist, 
then a new file is created. Here your program 
will start writing content from the beginning of 
the file.

a

Opens a text file for writing in appending mode. 
If it does not exist, then a new file is created. 
Here your program will start appending content 
in the existing file content.

r+ Opens a text file for both reading and writing.

w+
Opens a text file for both reading and writing. It 
first truncates the file to zero length if it exists, 
otherwise creates a file if it does not exist.

a+

Opens a text file for both reading and writing. It 
creates the file if it does not exist. The reading 
will start from the beginning but writing can 
only be appended.



24

WHAT IS THIS FILE TYPE

FILE *fopen( const char * filename, const char * mode );

Let’s look at the header file. (It is open source) 

Notice that NULL is defined. 

https://www.gnu.org/software/m68hc11/examples/stdio_8h-source.html 

https://www.gnu.org/software/m68hc11/examples/stdio_8h-source.html


25

FILE IO

int fclose( FILE *fp );



26

FIO EXAMPLE#include <stdio.h>
#include <stdlib.h>

int main()
{

// file pointer variable to store the value returned by
// fopen
FILE* fptr;

// opening the file in read mode
fptr = fopen("filename.txt", "r");

// checking if the file is opened successfully
if (fptr == NULL) {

printf("The file is not opened. The program will "
"now exit.");

exit(0);
}

return 0;
}



27


