
Daniel G. Graham Ph.D

CSO-1
Undefined Behavior

1. Undefined behavior

2. Padding in Structs

3. Struct Tree Example Visual

3

UNDEFINED BEHAVIOR

4

The comp.lang.c C FAQ defines “undefined behavior” like this:

Anything at all can happen; the Standard imposes no requirements. The program may
fail to compile, or it may execute incorrectly (either crashing or silently generating
incorrect results), or it may fortuitously do exactly what the programmer intended.

If any step in a program’s execution has undefined behavior, then the entire execution
is without meaning. This is important: it’s not that evaluating (1<<32) has an
unpredictable result, but rather that the entire execution of a program that evaluates
this expression is meaningless. --- Embedded in Academia

UNDEFINED BEHAVIOR

5

OFFICAL C DOCUMENTION

6

What is missing? What is the value in edi
The second parameter.

7

8

#include <limits.h>

#include <stdio.h>

int main (void)

{

 printf ("%d\n", (INT_MAX+1) < 0);

 return 0;

}

What should this program out?

MAX INT two complement: 0x7FFFFFFF

Should it be negative number, 0, or Max INT

The C Standard doesn’t say so it is undefined
behavior

UNDEFINED BEHAVIOR

9

LET SEE WHAT CLANG DOES

10

INSERT A CONSTANT

11

x= (x*2)/2
Should the compiler be allowed to optimize this
away.

Just like before what if X wraps. Should we return
the negative result

UNDEFINED BEHAVIOR

12

Compiled with -O3

13

x= (x*2)/2
Should the compiler be allowed to optimize this
away.

But if X is signed and can wrap around. (Let’s
check out a video)

Is wrapping behavior defined in the c language?

--Sadly no

UNDEFINED BEHAVIOR

14

MORE UNDEFINED BEHAVIOR

15

x= (x*2)/2
Should the compiler be allowed to optimize this
away.

But if X is unsigned and can wrap around. (Let’s
check out a video)

Is wrapping behavior defined in the c language?

--Sadly no

UNDEFINED BEHAVIOR

INT_MAX * 2 = negative
01111…11 == INT MAX
11111…10 == INT_MAX*2 (shift 2)
11111…111 == Result >> 1 (-1)

16

int a[5];

a[x] = 0;

If(x >= 5){

 printf("Do we need this?");

}

This printf should never happen. If it happens the
program is already broken, so it doesn't mater.

So, the compiler will optimize it away.

MORE UNDEFINED BEHAVIOR

17

a /= x

if(x==0){

print("Unreachable")

}

Dividing by zero is an undefined behavior

So compile will optimize away the if statement

UNREACHABNLE

18

a <<= x

If(x >= 32)

print("Unreachable")

Can't shift int by greater than 32.

Some compilers don't have this this
optimization built in.

NOT ALL OPTIMIZATION ARE IMPLEMENTED

19

int my_function(int a){

 int x = 0;

a/=x;

}

It one part of the function is has undefined
behavior the compiler ass

So now the compiler can optimize other code
with assumption that this function will not be
called. And this can start to cause strange
behavior

___buitin__unreachable()

assume()

20

int a;

if (a + 1 >a)

a++

The compiler will remove the if statement so it
difficult to see if something wraps.

WRAPPING

21

Many optimizations are possible, but they would
break too much code.

YOUR COMPILER BROKE MY CODE

22

int function(){

int a; //not initialized

 if(a ==0)

return 0;

 If(a!= 0)

 return 0;

}

What does this compile to?

UNINITIALIZED VALUES

23

What does this compile to?

ret

Yes. Just ret.

Uninitialized values are in an indeterminate state.

UNINITIALIZED VALUES

int function(){

int a; //not initialized

 if(a ==0)

return 0;

 If(a!= 0)

 return 0;

}

24

volatile char * buf = malloc(1);

if (buf == NULL)

return

char c1 = buf[0];

char c2 = buf[0];

assert(c1 == c2)

The operating system doesn't always reserve that
section of memory for you until you write to it.

The volatile keyword tells the compiler that the
variable may change, at any time with-out action
begin taken in code. (Think Memory mapped IO)

Draw picture of illustrating memory mapped IO

+

MEMORY IS NOT REALLY YOUR UNTIL YOU
WRITE TO IT.

Don't assume that the values that
you have not initialized are static or
stable.

25

Take the largest element size and uses that as the
default for all other members

NOW LET TALK A BIT ABOUT PADDING

struct name_tag{

 int y;

 char * x;

 char z;

};

y x z

0 3 4 11 12

This would be most compressed
representation. But NOT how it
get layout in the C standard.

Byte#

26

Take the largest element size and uses that as the
default for all other members

NOW LET TALK A BIT ABOUT PADDING

struct name_tag{

 int y;

 char * x;

 char z;

};

y x z

0 3 4 11 12

Instead, the compiler adds
padding

Also get alignment ☺

Byte#

y x z

0 7 8 15 16

Padding Padding

27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

