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C Strings and More



1. Question from last time

2. Char Array in C

3. Demo of debugging 

4. String in C 

5. Const keyword

6. Two-dimensional arrays 
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ARRAYS NOT QUITE POINTERS

int x[4] = {1,2,3,4};

int y[4] = {5,6,7,8};

x = y // Not allowed.

//If you want to do this you 
will need to a memcpy
(memcp(x,y, sizeof(x)); 

Arrays are of type
int [n] and language doesn’t 
allow these types to be 
assigned  
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ARRAY TYPES NOT ASSIGNABLE
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Allowed by the language Not allowed by the language

ARRAYS NOT QUITE POINTERS

int x[4] = {1,2,3,4};
int *p;
p = x; //Same as p=&(x[0]) 

Allowed 
pointer = array 

int x[4] = {1,2,3,4};
int *p;
x = p //Not allowed 

Because array types 
int[4] is not assignable 
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ARRAY VS POINTERS
04 00 00 00

03 00 00 00 

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9
int x[4] = {1,2,3,4};
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ARRAY VS POINTERS
04 00 00 00

03 00 00 00 

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9
int x[4] = {1,2,3,4};

int *p;
p = x; //Same as p=&(x[0])

 XX XX XX XX
XX XX XX XX

0XDO P
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ARRAY VS POINTERS
04 00 00 00

03 00 00 00 

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9
int x[4] = {1,2,3,4};

int *p;
p = x; //Same as p=&(x[0])

 DD 00 00 00
00 00 00 00

0XDO P
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ARRAY VS POINTERS

int x[4] = {1,2,3,4};
int *p;
x = p //Not allowed 

04 00 00 00

03 00 00 00 

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9

 XX XX XX XX
XX XX XX XX

0XDO P
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SYNTACTIC SUGAR 

x[i] *(x+i)

These are equivalent 
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TALK TO YOUR NEIGHBOR 
04 00 00 00

03 00 00 00 

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9

X[2] = *(x + 1);

printf(“value: %d”, x[1]);

What does this print out? 

int x[4] = {1,2,3,4};
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ARRAY IN C 

char a[4] = {‘A’, ‘B’, ‘C’, ‘D’};

0x44

0x43

0x42

0x41RSP

RSP-0x1

RSP-0x2

RSP-0x3

8 bits (1 byte) wide
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CHAR ARRAY, AND STRING

char b[7] = {‘D’,‘a’,‘n’,‘i’,‘e’,‘l’,‘\0’};

Null-terminating character
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CHAR ARRAY, AND STRING

char b[7] = {‘D’,‘a’,‘n’,‘i’,‘e’,‘l’,‘\0’};

char *b = “Daniel”;
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POINTER TO A POINTER

int **x;
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POINTER TO A POINTER

int variable = 7;
int *pointer = &variable;
int **pointer2pointer = &pointer;

A0 00 00 00 00 00 00 00  0x0AA

0C 00 00 00 00 00 00 00  

07 00 00 00

0x0A0

0x00C
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POINTER TO POINTER

0x44 0x43 0x42 0x41

A0 00 00 00 00 00 00 00  0x0AA

0C 00 00 00 00 00 00 00  0x0A0char *abc = “ABCD”;
char **myPhrase = &abc;
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LET’S IMPLEMENT STRING TOUPPER

Let’s write a function that takes in a 
string and converters it uppercase 

#include <stdio.h>

int main(){
    char *input = "lowercase";
    _toUpper(input);
    printf("%s", input);
}
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ASCII TABLE SNIPPET
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ASCII TABLE SNIPPET

We could just subtract 32 to our chars. ( Need to add 
cases to ignore space and special characters like @)
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STRING LITERALS IN C 



22
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STRING LITERALS IN C

char *b = “Daniel”;

char b[] = “Daniel”;

These are not the 
same thing in c

Let’s look at the assembly to see what 
happening 
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CHAR *B = “DANIEL” STORED AS A STRING IN CODE 

Stored as a string in 
code
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Also stored code 
section but a copy 
Moved onto the stack
(so we can modify it)
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THE DIFFERENCES

char *p = “Daniel”; char a[] = “Daniel”;

a is an array
a and &a  ARE the same

p is a pointer
p and &p are NOT the same
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COMMAND LINE ARGUMENTS

./a.out Hello

This is a command-line argument
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COMMAND LINE ARGUMENTS

clang hello.c

This is a command-line argument
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READING COMMAND LINE ARGUMENTS IN C

#include <stdio.h>

int main(int argc, char **argv){
    if(argc > 0){
        printf("argument was %s", *argv);
    }
} Get the first element in the array 

just like in python argument is 
name of the program itself 

./a.out Hello
prints a.out (Not Hello) 
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READING COMMAND LINE ARGUMENTS IN C

#include <stdio.h>

int main(int argc, char **argv){
    if(argc > 0){
        printf("argument was %s", *(argv + 1));
    }
}

./a.out Hello
prints hello
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READING COMMAND LINE ARGUMENTS IN C

#include <stdio.h>

int main(int argc, char **argv){
    if(argc > 0){
        printf("argument was %s", argv[1]);
    }
}
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Const keyword defines a read only section of memory.

CONST KEY WORD

const int x  = 10;
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NOT REALLY THE SAME AS #DEFINE

const int x  = 10; #define x 10 

Type information No type information 
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STRING HELPER FUNCTIONS <STRING.H> 
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STRING HELPER FUNCTIONS

size_t strlen(const char *str)

• size_t - integer the size of a pointer (unsigned)
• ssize_t - integer the size of a pointer (signed)
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STRING HELPER FUNCTIONS

size_t strlen(const char *str)

• size_t - integer the size of a pointer (unsigned)
• ssize_t - integer the size of a pointer (signed)

const keyword  prevents the value
The pointer points to from being reassigned  
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