
Daniel G. Graham Ph.D

COMPUTER SYSTEMS
AND ORGANIZATION

C Strings and More

1. Question from last time

2. Char Array in C

3. Demo of debugging

4. String in C

5. Const keyword

6. Two-dimensional arrays

3

ARRAYS NOT QUITE POINTERS

int x[4] = {1,2,3,4};

int y[4] = {5,6,7,8};

x = y // Not allowed.

//If you want to do this you
will need to a memcpy
(memcp(x,y, sizeof(x));

Arrays are of type
int [n] and language doesn’t
allow these types to be
assigned

4

ARRAY TYPES NOT ASSIGNABLE

5

Allowed by the language Not allowed by the language

ARRAYS NOT QUITE POINTERS

int x[4] = {1,2,3,4};
int *p;
p = x; //Same as p=&(x[0])

Allowed
pointer = array

int x[4] = {1,2,3,4};
int *p;
x = p //Not allowed

Because array types
int[4] is not assignable

6

ARRAY VS POINTERS
04 00 00 00

03 00 00 00

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9
int x[4] = {1,2,3,4};

7

ARRAY VS POINTERS
04 00 00 00

03 00 00 00

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9
int x[4] = {1,2,3,4};

int *p;
p = x; //Same as p=&(x[0])

 XX XX XX XX
XX XX XX XX

0XDO P

8

ARRAY VS POINTERS
04 00 00 00

03 00 00 00

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9
int x[4] = {1,2,3,4};

int *p;
p = x; //Same as p=&(x[0])

 DD 00 00 00
00 00 00 00

0XDO P

9

ARRAY VS POINTERS

int x[4] = {1,2,3,4};
int *p;
x = p //Not allowed

04 00 00 00

03 00 00 00

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9

 XX XX XX XX
XX XX XX XX

0XDO P

10

SYNTACTIC SUGAR

x[i] *(x+i)

These are equivalent

11

TALK TO YOUR NEIGHBOR
04 00 00 00

03 00 00 00

02 00 00 00

01 00 00 00X[0]

X[1]

X[2]

X[3]

0XDD

0XE1

0XE5

0XE9

X[2] = *(x + 1);

printf(“value: %d”, x[1]);

What does this print out?

int x[4] = {1,2,3,4};

12

ARRAY IN C

char a[4] = {‘A’, ‘B’, ‘C’, ‘D’};

0x44

0x43

0x42

0x41RSP

RSP-0x1

RSP-0x2

RSP-0x3

8 bits (1 byte) wide

13

CHAR ARRAY, AND STRING

char b[7] = {‘D’,‘a’,‘n’,‘i’,‘e’,‘l’,‘\0’};

Null-terminating character

14

CHAR ARRAY, AND STRING

char b[7] = {‘D’,‘a’,‘n’,‘i’,‘e’,‘l’,‘\0’};

char *b = “Daniel”;

15

POINTER TO A POINTER

int **x;

16

POINTER TO A POINTER

int variable = 7;
int *pointer = &variable;
int **pointer2pointer = &pointer;

A0 00 00 00 00 00 00 00 0x0AA

0C 00 00 00 00 00 00 00

07 00 00 00

0x0A0

0x00C

17

POINTER TO POINTER

0x44 0x43 0x42 0x41

A0 00 00 00 00 00 00 00 0x0AA

0C 00 00 00 00 00 00 00 0x0A0char *abc = “ABCD”;
char **myPhrase = &abc;

18

LET’S IMPLEMENT STRING TOUPPER

Let’s write a function that takes in a
string and converters it uppercase

#include <stdio.h>

int main(){
 char *input = "lowercase";
 _toUpper(input);
 printf("%s", input);
}

19

ASCII TABLE SNIPPET

20

ASCII TABLE SNIPPET

We could just subtract 32 to our chars. (Need to add
cases to ignore space and special characters like @)

21

STRING LITERALS IN C

22

23

STRING LITERALS IN C

char *b = “Daniel”;

char b[] = “Daniel”;

These are not the
same thing in c

Let’s look at the assembly to see what
happening

24

CHAR *B = “DANIEL” STORED AS A STRING IN CODE

Stored as a string in
code

25

Also stored code
section but a copy
Moved onto the stack
(so we can modify it)

26

THE DIFFERENCES

char *p = “Daniel”; char a[] = “Daniel”;

a is an array
a and &a ARE the same

p is a pointer
p and &p are NOT the same

27

COMMAND LINE ARGUMENTS

./a.out Hello

This is a command-line argument

28

COMMAND LINE ARGUMENTS

clang hello.c

This is a command-line argument

29

READING COMMAND LINE ARGUMENTS IN C

#include <stdio.h>

int main(int argc, char **argv){
 if(argc > 0){
 printf("argument was %s", *argv);
 }
} Get the first element in the array

just like in python argument is
name of the program itself

./a.out Hello
prints a.out (Not Hello)

30

READING COMMAND LINE ARGUMENTS IN C

#include <stdio.h>

int main(int argc, char **argv){
 if(argc > 0){
 printf("argument was %s", *(argv + 1));
 }
}

./a.out Hello
prints hello

31

READING COMMAND LINE ARGUMENTS IN C

#include <stdio.h>

int main(int argc, char **argv){
 if(argc > 0){
 printf("argument was %s", argv[1]);
 }
}

32

Const keyword defines a read only section of memory.

CONST KEY WORD

const int x = 10;

33

NOT REALLY THE SAME AS #DEFINE

const int x = 10; #define x 10

Type information No type information

34

STRING HELPER FUNCTIONS <STRING.H>

35

STRING HELPER FUNCTIONS

size_t strlen(const char *str)

• size_t - integer the size of a pointer (unsigned)
• ssize_t - integer the size of a pointer (signed)

36

STRING HELPER FUNCTIONS

size_t strlen(const char *str)

• size_t - integer the size of a pointer (unsigned)
• ssize_t - integer the size of a pointer (signed)

const keyword prevents the value
The pointer points to from being reassigned

37

38

39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

