
Daniel G. Graham PhD

CSO-1
X86 Assembly

1. Factorial Recursive Example
2. Swap Example With Mov
3. Swap Example with Lea
4. Jmp Instructions

3

The calling convention is broken into two sets of rules.
1. The first set of rules is employed by the caller of the subroutine (function)
2. The second set of rules is observed by the writer of the

subroutine/function (the “callee”)

C LANGUAGE CALLING CONVENTION

4

OUR WORKING EXAMPLE

//callee
int add(int x, int y){
 int result = x + y;
 return result;
}

//caller
int main(){
 return add(2, 3);
}

5

Rule 1. The caller should save the content of the register designated caller saved

Rule 2. To pass parameters to the subroutine, we put up to six of them into registers (in
order: rdi, rsi, rdx, rcx, r8, r9). If there are more than six parameters to the subroutine,
then push the rest onto the stack in reverse order (i.e. last parameter first) – since the
stack grows down.

Rule 3. To call the subroutine, use the call instruction. This instruction places the return
address on top of the parameters on the stack, and branches to the subroutine code.

Run the call instruction .
Rule 4. After the subroutine returns, (i.e. immediately following the call instruction) the
caller must remove any additional parameters (beyond the six stored in registers) from
stack. This restores the stack to its state before the call was performed

Rule 5. The caller can expect to find the subroutine's return value in the register RAX.

Rule 6. The caller restores the contents of caller-saved registers (r10, r11, and any in the
parameter passing registers) by popping them off of the stack. The caller can assume
that no other registers were modified by the subroutine.

6

Rule 1. Allocate local variables by using registers or making space on the stack.

Rule 2. Next, the values of any registers that are designated callee-saved that will be
used by the function must be saved. To save registers, push them onto the stack.

Run the call instruction .
Rule 3. When the function is done, the return value for the function should be placed in
RAX
Rule 4. The function must restore the old values of any callee-saved registers (RBX, RBP,
and R12 through R15) that were modified. The registers should be popped in the inverse
order that they were pushed.
Rule 5. Next, we deallocate local variables. By subtracting from RSP

Rule 6. Execute the ret instruction.

7

REGISTERS (CALLER SAVED)
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

8

REGISTERS (CALLEE SAVED)
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

9

Single bit registers
– CF Carry Flag (for unsigned)
– SF Sign Flag (for signed)
– ZF Zero Flag
– OF Overflow Flag (for signed)

CONDITION CODES

Implicitly set (think of it as a side effect) by arithmetic operations

A value of 1 indicates the condition is true and a value 0 indicates
that the flag is not set

10

IMPLICITLY SETTING THE FLAG

Implicitly set (think of it as a side effect) by arithmetic operations
Example: addq Src,Dest ↔ t = a+b

CF set if the carry out from most significant bit (unsigned overflow)
ZF set if t == 0
SF set if t < 0 (as signed)
OF set if two’s-complement (signed) overflow
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

11

COMPARE (CMP) INSTRUCTION
cmp does subtraction (but doesn’t store result)
cmp %rax, %rdi -> rdi - rax

CF ZF SF OF Condition codes

12

TEST INSTRUCTION
test does bitwize add
test %rax, %rdi -> rdi & rax

CF ZF SF OF Condition codes

Sets zero flag if the result of bitwise is zero
Also sets the SF flag with the most significant bit of the result is one

13

CONDITION CODES AND JUMPS

• jg, jle, etc. read condition codes

• named based on interpreting result of subtraction

• 0: equal;

• negative: less than;

• positive: greater than

CF ZF SF OF Condition codes

Normally a comparison is done
before the jmp

14

JUMP INSTRUCTIONS AND CONDITION CODES

Instruction Description Condition Code

jle Jump if less or equal (SF XOR OF) OR ZF

jg Jump if greater
(signed)

NOT (SF XOR 0F) &
NOT ZF

je Jump if equal ZF

Why check the overflow
flag?

CF ZF SF OF Condition codes

Talk to your neighbor.

15

EXAMPLE 1
movq $−10, %rax
movq $20, %rbx
subq %rax, %rbx // %rbx - %rax = 30

// result > 0: %rbx was > %rax
jle foo // not taken; 30 > 0

jle Jump if less or
equal

(SF XOR OF) OR ZF

CF ZF SF OF Condition codes

16

EXAMPLE 2 (TAKEN OR NOT TAKEN)

movq $10, %rax
movq $-20, %rbx
subq %rax, %rbx
jle foo

jle Jump if less or
equal

(SF XOR OF) OR ZF

Talk to your neighbor.

17

EXAMPLE 2 (TAKEN OR NOT TAKEN)

movq $10, %rax
movq $-20, %rbx
subq %rax, %rbx
jle foo

jle Jump if less or
equal

(SF XOR OF) OR ZF

CF ZF SF OF Condition codes -20-10 = -30
Sign flag set

condition codes example (3)
movq $−10, %rax
movq $20, %rbx
subq %rax, %rbx
jle foo // not taken, %rbx - %rax > 0 -> %rbx

Instruction Description Condition Code

jle Jump if less or equal (SF XOR OF) OR ZF

Jump is taken if result in rbx is <= 0

movq $20, %rbx
addq $−20, %rbx
je foo // taken, result is 0

// x - y = 0 -> x = y

condition codes example (3)

Instruction Description Condition Code

je Jump if equal ZF

What instructions set condition codes
most instructions that compute something set condition codes

some instructions only set condition codes:
cmp ∼ sub
test ∼ and (bitwise and)

Example: testq %rax, %rax — result is %rax

some instructions don’t change condition codes:
lea, mov
control flow: jmp, call, ret, etc.

21

COMPUTED JUMPS

Computed jumps
Instruction Description

jmpq %rax goto address RAX

jmpq 1000(%rax,%rbx,8) read address from memory at
RAX + RBX * 8 + 1000
// go to that address

23

OVERLAPPING REGISTERS
setting 32-bit registers — clears corresponding 64-bit register
movq $0xFFFFFFFFFFFFFFFF, %rax
movl $0x1, %eax

%rax is 0x1 (not 0xFFFFFFFF00000001)

setting 8/16-bit registers: doesn’t clear 64-bit register
movq $0xFFFFFFFFFFFFFFFF, %rax
movb $0x1, %al

%rax is 0xFFFFFFFFFFFFFF01 not 0x01

24

LIVE CODING SESSION

25

26

27

Swap Example with Mov instruction
Swap Example with lea (load effective address) instruction.
Later:
 jmp instruction and condition codes (Building loops)
 switch statements.

NEXT TIME

28

