
Daniel G. Graham PhD

CSO-1
X86 Assembly

1. Functions and x86 calling
convention

3

WHY THE MOVE TO EDI

4

Application Software

Operating system

Architecture

Micro Architecture

Gates

Devices

Physics

C

Linux

Risc-V

Data path, Stages

Nand, NOR, NOT ..

Field Effect Transistors

Electrons

5
-D, --disassemble-all Display assembler contents of all sections

objdump – tool that allows us to inspect the object file

Notice the hex machine
processes instructions just like our
toy ISA

Also notice how the address in
memory increases based on the
size of the instruction

6

http://ref.x86asm.net/coder32.html#x68

https://inst.eecs.berkeley.edu/~cs61c/fa18/img/ris
cvcard.pdf

X86 OPCODE LOOKUP

http://ref.x86asm.net/coder32.html
https://inst.eecs.berkeley.edu/~cs61c/fa18/img/riscvcard.pdf
https://inst.eecs.berkeley.edu/~cs61c/fa18/img/riscvcard.pdf

7

WE'LL USE X86 AT&T SYNTAX AS OUR CASE
STUDY FOR LOOKING AT

AN ASSEMBLY LANGUAGE

8

16 REGISTERS
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

9

OUR WORKING EXAMPLE

//callee
int add(int x, int y){
 int result = x + y;
 return result;
}

//caller
int main(){
 return add(2, 3);
}

The caller – The function that called another function
The callee – the function being called

10

add(int, int):
 push %rbx
 push %rbp
 movq %rdi, %rbx
 movq %rsi, %rbp
 addq %rbx, %rbp
 movq %rbp, %rax
 pop %rbp
 pop %rbx
 ret
main:

movq $3, %rsi
movq $2, %rdi
call add(int, int)
ret

//callee
int add(int x, int y){
 int result = x + y;
 return result;
}

//caller
int main(){
 return add(2, 3);
}

Why not just push all the registers?

11

Well instead of pushing everything on the stack. Why don't set some registers
as caller saved so that callee can use the registers without having to push
them?

INSIGHT (ALSO EASIER FOR COMPILATION)

12

The calling convention is broken into two sets of rules.

1. The first set of rules is employed by the caller of the subroutine (function)

2. The second set of rules is observed by the writer of the
subroutine/function (the “callee”)

C LANGUAGE CALLING CONVENTION

13

16 REGISTERS
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

14

REGISTERS (STACK POINTER)
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

15

THE CALLER

//caller
int main(){
 return add(2, 3);
}

16

Rule 1. The caller should save the content of the register that is designated as the caller
saved register

CALLER RULES

17

REGISTERS (CALLER SAVED)
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

18

Rule 1. The caller should save the content of the register that is designated as the
caller saved register

Rule 2. To pass parameters to the subroutine, we put up to six of them into registers (in
order: rdi, rsi, rdx, rcx, r8, r9). If there are more than six parameters to the subroutine,
then push the rest onto the stack in reverse order (i.e. last parameter first) – since the
stack grows down.

CALLER RULES

19

WHY THE MOVE TO EDI

20

REGISTERS (CALLER SAVED)
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

21

THE CALLER

//caller
int main(){
 return add(2, 3);
}

main:
movq $3, %rsi
movq $2, %rdi

22

Rule 1. The caller should save the content of the register that is designated as the
caller saved register

Rule 2. To pass parameters to the subroutine, we put up to six of them into registers (in
order: rdi, rsi, rdx, rcx, r8, r9). If there are more than six parameters to the subroutine,
then push the rest onto the stack in reverse order (i.e. last parameter first) – since the
stack grows down.

Rule 3. To call the subroutine, use the call instruction. This instruction places the return
address on top of the parameters on the stack, and branches to the subroutine code.

Run the subroutine instruction.

CALLER RULES

23

THE CALLER

//caller
int main(){
 return add(2, 3);
}

main:
movq $3, %rsi
movq $2, %rdi
call add(int, int)
ret

24

Rule 1. The caller should save the content of the register that is designated as the caller saved register

Rule 2. To pass parameters to the subroutine, we put up to six of them into registers (in order: rdi, rsi,
rdx, rcx, r8, r9). If there are more than six parameters to the subroutine, then push the rest onto the
stack in reverse order (i.e. last parameter first) – since the stack grows down.

Rule 3. To call the subroutine, use the call instruction. This instruction places the return address on top
of the parameters on the stack, and branches to the subroutine code.

Run the subroutine instruction
Rule 4. After the subroutine returns, (i.e. immediately following the call instruction) the caller must
remove any additional parameters (beyond the six stored in registers) from the stack. This restores the
stack to its state before the call was performed

Rule 5. The caller can expect to find the subroutine's return value in the register RAX.

Rule 6. The caller restores the contents of caller-saved registers (r10, r11, and any in the parameter
passing registers) by popping them off of the stack. The caller can assume that no other registers were
modified by the subroutine.

25

REGISTERS (CALLER SAVED)
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

26

THE CALLER

//caller
int main(){
 return add(2, 3);
}

main:
movq $3, %rsi
movq $2, %rdi
call add(int, int)
ret

RSI and RDI are caller saved. Why didn't the compiler bother to
push and pop them from the stack?

27

CALLEE

//callee
int add(int x, int y){
 int result = x + y;
 return result;
}

28

Rule 1. Allocate local variables by using registers or making space on the stack.

CALLEE RULES

29

EXAMPLE OF ALLOCATING LOCAL VARIABLES

//callee
int add(int x, int y){
 int result= x + y;
 return result;
}

add(int, int):
--snip--

Why doesn't the compiler have to allocate any space result variable?
(This return about where the return is stored)

30

Rule 1. Allocate local variables by using registers or making space on the stack.

Rule 2. Next, the values of any registers that are designated callee-saved that will be
used by the function must be saved. To save registers, push them onto the stack. RSP
will be pushed to the stack by the call instruction.

CALLEE RULES

31

REGISTERS (CALLEE SAVED)
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

32

SAVING REGISTERS

//callee
int add(int x, int y){
 int result= x + y;
 return result;
}

add(int, int):
 push %rbx
 push %rbp
 --snip--

33

Rule 1. Allocate local variables by using registers or making space on the stack.

Rule 2. Next, the values of any registers that are designated callee-saved that will be
used by the function must be saved. To save registers, push them onto the stack.

Run the subroutine instruction .

CALLEE RULES

34

SAVING REGISTERS

//callee
int add(int x, int y){
 int result= x + y;
 return result;
}

add(int, int):
 push %rbx
 push %rbp
 movq %rdi, %rbx
 movq %rsi, %rbp
 addq %rbx, %rbp
 --snip--

35

Rule 1. Allocate local variables by using registers or making space on the stack.

Rule 2. Next, the values of any registers that are designated callee-saved that will be
used by the function must be saved. To save registers, push them onto the stack. RSP
will be pushed to the stack by the call instruction.

Run the subroutine instructions

Rule 3. When the function is done, the return value for the function should be placed in
RAX

CALLEE RULES

36

SAVING REGISTERS

//callee
int add(int x, int y){
 int result= x + y;
 return result;
}

add(int, int):
 push %rbx
 push %rbp
 movq %rdi, %rbx
 movq %rsi, %rbp
 addq %rbx, %rbp
 movq %rbp, %rax
--snip--

37

Rule 1. Allocate local variables by using registers or making space on the stack.

Rule 2. Next, the values of any registers that are designated callee-saved that will be
used by the function must be saved. To save registers, push them onto the stack. RSP
will be pushed to the stack by the call instruction.

Run the subroutine instruction

Rule 3. When the function is done, the return value for the function should be placed in
RAX

Rule 4. The function must restore the old values of any callee-saved registers (RBX, RBP,
and R12 through R15) that were modified. The registers should be popped in the inverse
order that they were pushed.

CALLEE RULES

38

REGISTERS (CALLEE SAVED)
%rax Return value

%rbx Callee saved

%rcx Argument #4

%rdx Argument #3

%rsi Argument #2

%rdi Argument #1

%rsp Stack pointer

%rbp Callee saved

%r8 Arguments #5

%r9 Arguments #6

%r10 Caller saved

%r11 Caller saved

%r12 Callee saved

%r13 Callee saved

%r14 Callee saved

%r15 Callee saved

39

SAVING REGISTERS

//callee
int add(int x, int y){
 int result= x + y;
 return result;
}

add(int, int):
 push %rbx
 push %rbp
 movq %rdi, %rbx
 movq %rsi, %rbp
 addq %rbx, %rbp
 movq %rbp, %rax
 pop %rbp
 pop %rbx
 --snip--

40

Rule 1. Allocate local variables by using registers or making space on the stack.

Rule 2. Next, the values of any registers that are designated callee-saved that will be
used by the function must be saved. To save registers, push them onto the stack. RSP
will be pushed to the stack by the call instruction.

Run the subroutine instruction .

Rule 3. When the function is done, the return value for the function should be placed in
RAX

Rule 4. The function must restore the old values of any callee-saved registers (RBX, RBP,
and R12 through R15) that were modified. The registers should be popped in the inverse
order that they were pushed.

Rule 5. Next, we deallocate local variables. By subtracting from RSP

CALLEE RULES

41

Rule 1. Allocate local variables by using registers or making space on the stack.

Rule 2. Next, the values of any registers that are designated callee-saved that will be
used by the function must be saved. To save registers, push them onto the stack. RSP
will be pushed to the stack by the call instruction.

Run the subroutine instruction

Rule 3. When the function is done, the return value for the function should be placed in
RAX

Rule 4. The function must restore the old values of any callee-saved registers (RBX, RBP,
and R12 through R15) that were modified. The registers should be popped in the inverse
order that they were pushed.

Rule 5. Next, we deallocate local variables. By subtracting from RSP

Rule 6. Execute the ret instruction.

42

SAVING REGISTERS

//callee
int add(int x, int y){
 int result= x + y;
 return result;
}

add(int, int):
 push %rbx
 push %rbp
 movq %rdi, %rbx
 movq %rsi, %rbp
 addq %rbx, %rbp
 movq %rbp, %rax
 pop %rbp
 pop %rbx
 ret

43

int fib(int n){

if (n == 0){

return 0;

}

 if (n == 1){

 return 1;

 }

 return fib(n-1) + fib(n-2);

}

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

44

Contains:

1. Local storage of variables (optional)

2. Temporary space (optional)

3. return address

STACK FRAMES

Previous Frame

Current Frame

Frame pointer %rbp

Stack pointer %rsp

45

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)

%rbp

%rsp

46

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)

%rbp

%rsp
fib(2)

47

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)

%rbp

%rsp

fib(2)

fib(1)

48

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)

%rbp

%rsp

fib(2)

49

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)

%rbp

%rsp

fib(2)

fib(0)

50

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)

%rbp

%rsp

fib(2)

51

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)
%rbp

%rsp

52

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)

%rbp

%rsp

fib(1)

53

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)
%rbp

%rsp

54

Let's think about the call tree for fib (3)

FIBONACCI RECURSIVE

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(3)

%rbp

%rsp

main()

55

%rbp is optional

▪ You'll see when we look at the optimized
examples

DETAIL LOOK AT THE
FRAME Arguments

over 7
Return Addr

Old %rbp

Saved
Register

And
Local

Variables

%rbp

%rsp

Callee {
Caller {

56

Sometimes you will see the following callee prologue and epilogue added the beginning
and end of the function

CALLEE’S PROLOGUE AND EPILOGUE:

push rbp; at the start of the callee (prologue)
mov rbp, rsp
...

pop rbp; just before the ending ’ ret ’ (epilogue)

This code is unnecessary and is a hold-over from the 32-bit calling
convention. You can tell the compiler to not include this code by invoking
it with the –fomit-frame-pointer flag.

57

Swap Example with Mov instruction

Swap Example with lea (load effective address) instruction.

Later:

 jmp instruction and condition codes (Building loops)

 switch statements.

NEXT TIME

58

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

