
Daniel G. Graham PhD

CSO-1
X86 Assembly

1. X86 Assembly
2. Assemble instructions using Clang
3. Push Encoding
4. Walk through of Push Pop

Example in x86
5. Inspect memory

3

NOW LET’S START TALK ABOUT WRITING
ASSEMBLY FOR X86 PROCESSORS

4

X86 REGISTERS

RAX

64 Bits

5

X86 REGISTERS

32 Bits

EAXRAX

64 Bits

The lowest 32 bits

6

X86 REGISTERS

16 bits

64 Bits

AX can future divided
into two registers

AX EAXRAX

7

X86 REGISTERS

16 bits

64 Bits

AX

AL EAXRAX AH

8

THERE ARE 16 REGISTER

AL EAXRAX AH

BL EBXRBX BH

CL ECXRCX CH

SPL ESPRSP SP

9

Stack

Memory

0x0

SPL ESPRSP SP

10

AT&T SYNTAX

suffix Meaning

b “Byte”: 1 byte

w “Word”: 2 bytes

l “Long”: 4 bytes

q “Quad”: 8 bytes
(4 words)

000000000000002A$42

b

wlq

constants start with $

pushq $42

X86 will truncate in constant is
larger than the destination

11

AT&T SYNTAX

AL EAXRAX AH

popq %rax

registers start with %

q

l

w

b

suffix Meaning

b “Byte”: 1 byte

w “Word”: 2 bytes

l “Long”: 4 bytes

q “Quad”: 8 bytes
(4 words)

12

ASSEMBLY IS MORE PRECISE
THAN C

13

14

15

-c Only run preprocess, compile, and assemble steps

-o <file> Write output to <file>

16
-D, --disassemble-all Display assembler contents of all sections

objdump – tool that allows us to inspect the object file

Notice the hex machine
instructions just like
our toy ISA

Also notice how the
address in memory
increase based on the
size of the instruction

17

18

19

20

21

22

23

stepi tells the debugger to execute the instruction

The arrow points the next instruction that will be
executed

24

Notice that RSP has been decremented by 8
The size of a quad word

25

me – memory
rea - read
-s8 8 byte blocks
-fx format hex
-c4 four blocks
$rsp – memory address

26

Notice that 4 is pushed to
the stack

27

d – disassemble
command, great way to
get perspective on what
you are currently working
on.

28

Execute the
push instruction

29

RSP is again
decremented by 8

30

31

32
Lower address

Stack grows to lower address

33

Higher addresses

34

Let’s execute the pop in %rax
instruction

35

The value at the top of stack
has been saved to rax.

36

RSP has been incremented.

37

Top stack now contains 4

38

If we look at lower address in
memory we’ll that 5 is still
there we haven’t deleted it.
We’ve just moved RSP

39

Now register rbx contains the
value 4.

40

Next we will add rax and rbx
and store the result in rbx.

In At&T syntax the designation
register is always last.

41

Here is the state of the
registers before we execute
the instruction

42

Notice that the result is
stored in rbx. Remember
the destination is always
last

43

Value in rbx store to the
stack

44

NOW LET’S DO THAT AGAIN WITH THE GUI
YOU CAN MOVE BACK AN FORTH IF YOU WANT

TO INSPECT MEMORY

45

Set up just like you did before
but this time instead of using
stepi step over an instruction
launch the gui

46

47

48

49

Tab to navigate between panels
and right arrow to expand an
option. I have expanded the
general registers.

50

H for help option
And ESC to close window

51

52

53

54

55

56

57

58

NEXT TIME
• ()s represent value in memory

000000000000FFrbx%rbx

(%rbx) x0FF

59

COMPUTED ADDRESS

Base + (Index * Scale) + Displacement

disp(base, index, scale)

AT&T Syntax Pseudo code

100(%rbx, %rcx, 4) memory[rbx+rcx*4 + 100]

100(%rbx) memory[rbx + 100]

100(%rbx,8) memory[rbx * 8 + 100]

100(,%rbx,8) memory[rbx * 8 + 100]

100(%rbx,%rcx) memory[rbx+rcx+100]

100 memory[100]

61

COMPUTED ADDRESSES

AT&T syntax:
 movq $42, 10(%rbx,%rcx,4)

rbx+(rcx*4)+10

00000000000001rbx

00000000000002rcx

0x13

1+2*4+10 = 19

 19 = 0x13

$42 = 0x2A

62

