
Daniel G. Graham PhD

CS0 2130
Overview

1. Discuss the ideas from our
last 14 lectures.

2. Only 25 lectures left after
this one. (Yeah, it goes by
fast)

3. Topics, and tools for
continuing your hardware
journey

4. Now we move to software
x86 assembly and C

3

THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

4

BOTTOM-UP APPROACH

5

THIS WERE WE’LL START OUR JOURNEY

6

• Logic gates are circuits that perform logic
functions

• such as AND, OR, (NOT) , etc
• Logic gates have different symbols and their

behavior is normally described using a truth table.
•

WHAT ARE LOGIC GATES
AND

Y = AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A
B Y

7

SINGLE INPUT VS TWO INPUT GATES

NOT

Y = A

A Y
0 1
1 0

A Y

OR

Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A
B Y

8

MORE LOGIC GATES
XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

XOR NAND NOR

Y = A + B Y = AB Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

A
B Y A

B Y A
B Y

1
0
0
1

9

PULL UP PULL DOWN NETWORKS

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

NOT

Y = A

A Y
0 1
1 0

A Y
VDD

A Y

GND

N1

P1

10

NOT GATE

NOT

Y = A

A Y
0 1
1 0

A Y
VDD

A Y

GND

N1

P1
A P1 N1 Y

0 ON OFF 1

1 OFF ON 0

11

A

B

Y

N2
N1

P2 P1
NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

NAND gates are Turning complete you can
build all other gates from them

12

NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

13

14

15

16

THE NAND
GAME

17

WHAT IS THE OUTPUT OF
THIS CIRCUIT?

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

18

THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

19

1 BIT MUX

Y
0 0
0 1
1 0
1 1

0
1
0
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0

1

S

D0
Y

D1

D1 D0S Y
0
1 D1

D0

S

20

2 BIT MUX

with a Karnaugh map or read off by inspection (Y is 1 if S= 0 AND D0 is
1 OR if S= 1 AND D1 is 1).

Alternatively, multiplexers can be built from tristate buffers as shown
in Figure 2.56. The tristate enables are arranged such that, at all times,
exactly one tristate buffer is active. When S= 0, tristate T0 is enabled,
allowing D0 to flow to Y. When S= 1, tristate T1 is enabled, allowing
D1 to flow to Y.

Wider Multiplexers
A 4:1 multiplexer has four data inputs and one output, as shown in
Figure 2.57. Two select signals are needed to choose among the four data
inputs. The 4:1 multiplexer can be built using sum-of-products logic,
tristates, or multiple 2:1 multiplexers, as shown in Figure 2.58.

The product terms enabling the tristates can be formed using AND
gates and inverters. They can also be formed using a decoder, which we
will introduce in Section 2.8.2.

Wider multiplexers, such as 8:1 and 16:1 multiplexers, can be built
by expanding the methods shown in Figure 2.58. In general, an N:1 mul-
tiplexer needs log2N select lines. Again, the best implementation choice
depends on the target technology.

Multiplexer Logic
Multiplexers can be used as lookup tables to perform logic functions.
Figure 2.59 shows a 4:1 multiplexer used to implement a two-input

D1

Y

D0

S

S 00 01

0

1

Y

11 10
D1:0

0

0

1

0

1

1

0

1

Y = D0S + D1S
Figure 2.55 2:1 multiplexer
implementation using two-level
logic

Y

D0

S

T0

T1

Y = D0S + D1S

D1

Figure 2.56 Multiplexer using
tristate buffers

00

S1:0

D0
D1 Y

01
10
11

D2
D3

2

Figure 2.57 4:1 multiplexer

Shorting together the outputs of
multiple gates technically violates
the rules for combinational
circuits given in Section 2.1.
But because exactly one of the
outputs is driven at any time,
this exception is allowed.

84 CHAPTER TWO Combinational Logic Design

21

2 BIT MUX

with a Karnaugh map or read off by inspection (Y is 1 if S= 0 AND D0 is
1 OR if S= 1 AND D1 is 1).

Alternatively, multiplexers can be built from tristate buffers as shown
in Figure 2.56. The tristate enables are arranged such that, at all times,
exactly one tristate buffer is active. When S= 0, tristate T0 is enabled,
allowing D0 to flow to Y. When S= 1, tristate T1 is enabled, allowing
D1 to flow to Y.

Wider Multiplexers
A 4:1 multiplexer has four data inputs and one output, as shown in
Figure 2.57. Two select signals are needed to choose among the four data
inputs. The 4:1 multiplexer can be built using sum-of-products logic,
tristates, or multiple 2:1 multiplexers, as shown in Figure 2.58.

The product terms enabling the tristates can be formed using AND
gates and inverters. They can also be formed using a decoder, which we
will introduce in Section 2.8.2.

Wider multiplexers, such as 8:1 and 16:1 multiplexers, can be built
by expanding the methods shown in Figure 2.58. In general, an N:1 mul-
tiplexer needs log2N select lines. Again, the best implementation choice
depends on the target technology.

Multiplexer Logic
Multiplexers can be used as lookup tables to perform logic functions.
Figure 2.59 shows a 4:1 multiplexer used to implement a two-input

D1

Y

D0

S

S 00 01

0

1

Y

11 10
D1:0

0

0

1

0

1

1

0

1

Y = D0S + D1S
Figure 2.55 2:1 multiplexer
implementation using two-level
logic

Y

D0

S

T0

T1

Y = D0S + D1S

D1

Figure 2.56 Multiplexer using
tristate buffers

00

S1:0

D0
D1 Y

01
10
11

D2
D3

2

Figure 2.57 4:1 multiplexer

Shorting together the outputs of
multiple gates technically violates
the rules for combinational
circuits given in Section 2.1.
But because exactly one of the
outputs is driven at any time,
this exception is allowed.

84 CHAPTER TWO Combinational Logic Design

22

THE IDEA

ADDER
A

B
A +B

23

Our gates only support 0 and 1s.
How can we represent other decimal numbers?
How can we present negative numbers?
What about fractions J?

THE CHALLENGE

24

BINARY

11012 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 1310
one
eight

2's colum
n

4's colum
n

8's colum
n

one
four

no
two

one
one

1's colum
n

25

4-BIT ADDER

ADDER

A

B

A + B

Carry

Sign Bit
Signed

0

1

2

3

4

5

6

7

-0

-1

-2

-3

-4

-5

-6

-7

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Bias
Signed

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Floor((2n -1)/2) = 7

Two’s
Complement

Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

29

Hex Digit Decimal Binary
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

HEXADECIMAL
Convert 00101110 to hexadecimal Answer: 2E

Group them
0010 = 2
1110 = E
Final 0x2E

• Some programming languages uses prefixes
• Hex: 0x

• 0x23AB = 23AB16

• Binary: 0b
• 0b1101 = 11012

30

BITWISE OR |

11002
01102
11102

|

#python example
x = 12
y = 6
z = x | y
print(z)
#prints 14

31

BITWISE OR XOR ^

11002
01102
10102

^

#python example
x = 12
y = 6
z = x ^ y
print(z)
#prints 10

32

File the second bit of x. 1 => 0 and 0 => 1

FLIPPING BITS

11002

11102

^ 00102
What if the nth bit was 1 instead?

33

The Idea of masking with can extra a certain section of
bits by anding.

MASKING (EXTRACTING BITS)

110111002

000011002
& 000011112

Lower 4 bits extracted

#python example
x = 220
mask = 0x0F
x = x & mask
print(x)
#prints 12

34

0010 parity bit is 1
0110 parity bit is 0

PARITY

parity = 0
repeat 32 times:
 parity ^= (x&1)
 x >>= 1

0010
0
0

⊕

0010
0⊕

1
0010

1⊕
1

0010
1⊕

1

Result of xor

Final Parity
bit

Partity bit
starting
value

Result
shifted one

Same as just xoring each bit 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0

35

PARALLEL EVALUATION
Observe that xor is both transitive and associative; thus we can re-write

x0⊕x1⊕x2⊕x3⊕x4⊕x5⊕x6⊕x7

using transitivity as
x0⊕x4⊕x1⊕x5⊕x2⊕x6⊕x3⊕x7

and using associativity as
(x0⊕x4)⊕(x1⊕x5)⊕(x2⊕x6)⊕(x3⊕x7)

and then compute the contents of all the parentheses at once via
x ^ (x>>4).

36

PARALLEL EVALUATION

x0⊕x1⊕x2⊕x3⊕x4⊕x5⊕x6⊕x7
using transitivity as

x0⊕x4⊕x1⊕x5⊕x2⊕x6⊕x3⊕x7

and using associativity as
(x0⊕x4)⊕(x1⊕x5)⊕(x2⊕x6)⊕(x3⊕x7)

and then compute all at once via
x ^ (x>>4).

x ^= (x>>16)
x ^= (x>>8)
x ^= (x>>4)
x ^= (x>>2)
 x ^= (x>>1)
parity = (x & 1)

37

ENDIANNESS

Little ENDIAN
0x0000005C (9210)

Less significant at Lowest
address

38

ENDIANNESS

Big ENDIAN
0x5C000000 (154350387210)

Most significant Byte at
lowest address

39

ENDIANNESS

40

• How can we represent decimal values in binary?
• Why do errors like these occur?

>>> 0.1 + 0.1 + 0.1 == 0.3
False
>>> (0.1 + 0.1 + 0.1) == 0.3
False
>>> x = 0.1 + 0.1 + 0.1
>>> x
0.30000000000000004

>>> 0.3 + 0.3 + 0.3
>>> 0.8999999999999999

FLOATING POINT

Floating point
rounding error

41

IEEE 754

sign MantissaExponent

number = sign(1 + Mantissa) x 2exponent – bias

On 32 bit machines bias in normal 127 (Yes this is
bias representation we talked about earlier)

42

0.1101 = 1.101 x 2-1
Keep going until you get to your first 1.

BINARY STRING

0.01101 = 1.101 x 2-2

0.001101 = 1.101 x 2-3

43

Let’s convert 0.8125 to floating-point representation

CONVERSION EXAMPLE

1 1 0 1

2-1 2-2 2-3 2-4

1 x 1/2 + 1x 1/4 + 0 x 1/8 + 1 x 1/16 = 13/16

0.8125 x 2=1.6250 1
0.6250 x 2=1.2500 1
0.2500 x 2=0.5000 0
0.5000 x 2=1.0000 1

0.1101
= 1.101 x 2-1

44

CONVERSION EXAMPLE PART 2

0.1101 = 1. 101 x 2-1

Sign: 0
Mantissa: 101
Exponent: -1 + 127 = 126(d)
= 1111110(b)

0 01111110 1010000 00000000 00000000

45

Just like the 1/3 0.1 keeps repeating

CONVERSION PART 3

0.1 x 2 = 0.2 0
0.2 x 2 = 0.4 0
0.4 x 2 = 0.8 0
0.8 x 2 = 1.6 1
0.6 x 2 = 1. 2 1
0.1 x 2 = 0.2 0
…… repeats …

0 01111011 1001100 11001100 1100110

123

(-1)s x (1 + m) × 2exponent – bias

(-1)0 x (1 +) × 2123 - 127

½ + 1/24 + 1/25 + 1/28 + 1/29 +
1/212 + 1/213 + 1/216 + 1/217 +
1/220 + 1/221

0.0999999940395355224609375 =

No quite 0.1

46

GREAT NOW WE HAVE ALL WE NEED TO THINK
ABOUT DESIGNING OUR ADDER

47

4-BIT ADDER

ADDER

A

B

A + B

Carry

Great now let’s build it with gates.

48

1 1 1 1 ß Carries
 0 1 1 1
+ 1 0 1 1
 0 0 1 0

Let start by building a half adder
something that just adds two bits.

Let’s build a truth table.

A B A + B C.out
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

ADDING
We can implement
A + B with an XOR gate
And the C.out (Carry out)
With an AND gate

A B

A + B

C.out

49

http://www.falstad.com/circuit/circuitjs.html?ctz=
CQAgjCAMB0l3BWc0FwCwCY0HYEA4cEMElURTJy
BTAWjDACgwE0QMs21KBmANj06VKGKOSZl2rMGl
Z8B01sNEIGAGXAZ5vSnkphtbUQDMAhgBsAzlXJQ
1GgZJC62HEZVOXrSSAwDu9lykDRx9-
fWEOcIDQ8AMwTUDov1iI1kcQ5PitPQBOESiYsDyU
8GLiXlswsoQK9JrK0vzgyIMfAFkQOXAZEDR9brS2F
AYOrqxKPtquQwxhoA

HALF ADDER DEMO
https://tinyurl.com/ygpea8v4

https://tinyurl.com/ygpea8v4

50

1 1 1 1 ß Carries
 0 1 1 1
+ 1 0 1 1
 0 0 1 0

ADDING

We can implement
A + B with an XOR gate
And the C.out (Carry out)
With an AND gate

A B

A + B

C.out

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S = A Å B
Cout = AB

Half
Adder
A B

S

Cout +

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S = A Å B Å Cin
Cout = AB + ACin + BCin

Full
Adder

Cin

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

1
0
0
1

0
1
1
1

A B

S

Cout Cin+

51

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S = A Å B
Cout = AB

Half
Adder
A B

S

Cout +

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S = A Å B Å Cin
Cout = AB + ACin + BCin

Full
Adder

Cin

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

1
0
0
1

0
1
1
1

A B

S

Cout Cin+

1 1 1 1 ß Carries
 0 1 1 1
+ 1 0 1 1
 0 0 1 0

Note on special case 3 input xor.
Draw the three gates. Really
Three xors stacked.

52

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S = A Å B
Cout = AB

Half
Adder
A B

S

Cout +

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S = A Å B Å Cin
Cout = AB + ACin + BCin

Full
Adder

Cin

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

1
0
0
1

0
1
1
1

A B

S

Cout Cin+ 1 1 1 1 ß Carries
 0 1 1 1
+ 1 0 1 1
 1 1 1 0

C.out has been rewritten to reduce the number of
gates needed.

53

Next let’s build a full adder

S31

A30 B30

S30

A1 B1

S1

A0 B0

S0

C30 C29 C1 C0
Cout ++++

A31 B31

Cin

RIPPLE CARRY ADDER

54

1 1 1 1 ß Carries
 0 1 1 1
+ 1 0 1 1
 0 0 1 0

RIPPLE CARRY ADDER

55

THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

56

Rising Edge

CLOCKS EDGES

0

1

Single Cycle

Time

57

Falling Edge.

CLOCKS EDGES

0

1

Single Cycle

Time

We will build a
single cycle
machine it will
complete all the
computation in
a single cycle

58

A clock is something that produces a periodic signal

USING RING OSCILLATORS TO GENERATE CLOCKS

Frequency = 1/(2*t*n)
Where t is time delay of an inverter and n is
number of inverters

Let’s walk through
an example
assume that Q
starts of as 0

59

Goal
1. Understand the behavior of a positive edge-

triggered D flip-flop.
• How do we store a bit
• What happens when the clock changes
• What does it mean to be a positive

edge triggered flip flop
• What is Q and Q

STORING SINGLE

D Q

QClock

60

Use this link to experiment with the flipflop
during lecture. Try different things and see how it
works
https://tinyurl.com/2dhk5kvg

http://www.falstad.com/circuit/circuitjs.html?ctz=
CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIx
AUgoqoQFMBaMMAKDASUPxABZsUQGPD178oFF
gHcQXPKIE88VPgMhSZ3HoRGLl2qCwAyvJfN6KzVC
ADMAhgBsAznWpqASib064vfRAFgPijQSMFIVDAIL
ACygpA6YkrKYlRhLAD21PrKkKSu0BBWIADyAK4AL
gAOFRngMiI5eeGw8GSECIQo4SABINggAJYAdtXlt
QLZvLnE+fC5GO2d3QIC-QDG9ulrANYsQA

BUILT SIMULATOR VERSION

https://tinyurl.com/2dhk5kvg

61

THE FLIP FLOP HOLD HOLDS THE VALUE FOR A
CLOCK CYCLE

D Q

QClock

1
1

0

0

clock

D

Q

62

BUILDING A REGISTER FROM FLIP FLOPS

D Q

CLK

1
D Q

CLK

0
D Q

CLK

0

Removed Q (bar) for reability

0
0
1

63

REGISTER SYMBOLS

CLK

3
Data outData in

64

Let’s put it all together and build a 3-bit counter
Circuit that counts from
000,
001,
010,
011,
100,
101,
110,
 111

3-BIT COUNTER

CLK

3
Data outData in

+

65

THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

66

• To track where we are in a program

PROGRAM COUNTER

CLK

D1 Q1D0 Q0 Dn Qn

…

n-bit Register

+
1

PCNext PC

CLK

n n

n-bit PC

n-bit Reg

67

MEMORY COMPONENTS OF A PROCESSOR

32 32

CLK

A
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

RD

Register
File

32

PCPCNext
5

5

32

32

32

32

A RD
Data

Memory
WD

WE

CLK

32

32

32

5

CLK

68

• Temporary storage location
• Stores immediately needed variables
• External interface

• Addresses: A1, A2, A3
• Data: RD1, RD2, WD3
• Enable: WE3
• Clock: CLK

REGISTER FILE

69

READ FROM A REGISTER FILE
Din

Doutn n

Din
Doutn n

Din
Doutn n

Din
Doutn n

Reg 0

Reg 1

Reg 2

Reg 3

n4:1
MUX

A1

RD1

n

A2
2

RD24:1
MUX

2

D

D

D

D

DEMULTIPLEXER (DEMUX)

70

• Connects one input to one of the N outputs
• Select input is log2N bits – control input

Example: 1:2 Demux

S Y0 Y1

0 D 0

1 0 D

D 1:2
DEMUX

Y0

Y1

S Y0

Y1

D

S

71

WRITE TO A REGISTER FILE
Dout

n

n

CLK

Doutn

Dout
n

Doutn

Reg 0

Reg 1

Reg 2

Reg 3

D

D

D

D

WE

WD

1:4
DEMUX

A3
2

72

• Stores the program

Ø Read data (RD) for a given address (A)

INSTRUCTION MEMORY

For this class, we will assume we cannot write to Instruction Memory.

73

• Contains data needed by the program

Ø Read data (RD) from a given address (A)
Ø Write data (WD) to a given address (A)

DATA MEMORY

74

EXERCISE

Answer:

75

MEMORY HIERARCHY

Figure from: https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

Levels in Speed
and Capacity of
the Memory

Higher levels larger
and slower
memory

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

76

ARITHMETIC LOGIC UNIT
A B

N:1
MUX C

Function Code

Adder

Divider

Multiplier

AND

……

3232

32

77

ALU SYMBOL AND INPUTS

A

B

Flags example Carry Bit

Result

Function Code

78

TOY ISA AND PROCESS
VERSION 0.1

WE’LL MAKE IT BETTER DON’T WORRY

79

TINY PROGRAM TO ASSEMBLY

m = 4
x = 2
b = -1
y = m*x*b

Looks like we need two types on
instructions

1. An instruction to load values
2. An instruction to computation

(multiply)

80

LET’S DECIDE HOW WE ARE GOING TO LAYOUT
OUR BITS

m = 3
x = 2
b = -1

1. An instruction to load values into Registers

R0 =3
R1 = 2
R2 = -1

ValueR

8 bits

XXX

3-bits Unused

We just make
these zeros
XXX = 000

81

NOW LET’S TRANSLATE OUT PROGRAM TO
ONES AND ZERO

m = 4

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

ValueRXXX

01100000

01001000

11110000

0x03

0x0A

0x17

FULL ISA

82

Let look at each
of these
instructions

83

GREAT WE HAVE OUR FIRST INSTRUCTION

ValueRAXXX

RA = Value

84

+
1

PCNext

CLK

8 8

n-bit PC

8-bit Reg

A RD

0x03
0x0A
0x17

8 8

AUTOMATICALLY FETCH A NEW INSTRUCTION
EVERY CLOCK CYCLE

CLK

0x03

85

86

+
1

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
0x0A
0x17

8 8

CLK

0x03

A1 RD1

A2 RD2
A3
WD3

01100000

2
3

WE

1

Our program would have loaded
values into the register file

R0 =3
R1 = 2
R2 = -1

87

OPCODE

Multiply Registers

XXXRA0

1-bit

y = m*x*b R0 *= R1
R0 *= R2

RB

Finally, we need an opcode to distinguish our load
instruction from our multiple

0 --> Multiply
1 --> Save Value
to register

88

ENCODING

y=m*x*b

Let’s multiply value in Registers

R0 *= R1

R0 *= R2

0x20

0x40

0x17

XXXRA0 RB

000000 01

000000 10

89

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

000000 10

R0 = 6
R1 = 2
R2 = -1

6

-1

6

3
2

6

Remember
writing
just a
occurs at
the edge

90

NOTE WE ALSO NEED TO UPDATE THE
ENCODING OF OUR LOADS

m = 4

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

01100

01001

11110

0x83

0x8A

0x97

ValueRA1 RB

1 00

1 00

1 00

91

m = 4

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

01100

01001

11110

0x83

0x8A

0x97

ValueRA1 RB

1 00

1 00

1 00

y=m*x*b

Let’s multiply value in Registers
R0 *= R1

R0 *= R2

0x20

0x40

0x17

XXXRA0 RB

000000 01

000000 10

92

INSTEAD GOING INSTRUCTION BY INSTRUCTION
LET’S DESIGN THE ISA AND THE MACHINE

93

TOY INSTRUCTION SET ARCHITECTURE (ISA)
The ISA defines:
1. Instructions and their layout
2. Data types
3. Registers we’ll have

How instructions are laid out in our ISA

94

ENCODING OUR FIRST INSTRUCTION

R icode a b
7 6 5 4 3 2 1 0

immediate

byte at pc byte at pc + 1

7 6 5 4 3 2 1 0

RA = RBicode 0

Try to encode the following instruction R0 = R1

0 0 0 0 0 0 0 1
7 6 5 4 3 2 1 0

Not used
This
instruction
is not using
a value

95

R icode a b
7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

icode b Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

R0 = 8
R1 = -1
R0 += R1

0 110 00 00 0 0 0 0 1 0 0 0

0x60 0x08

96

R0 = 8
0x60

0x08

0x64

0xFF

0x11

R1 = -1

R0 += R1

{
{Notice that we have to

increment the Program
Counter by two for
these instructions.
Because they are two
bytes long while the
other instructions are
only 1 byte

97

THE FLOW

0x60 0x08 0x64 0xFF 0x11

R0 = 8
R1 = -1
R0 += R1

x = 8
y = -1
z = x + y

98

FULL ISA

99

We’ll give the
full description
of ISA at the
begin of every
exam. In fact this
a picture of what
we will give you.

100

Registers

READ FROM MEMORY ADDRESS STORED IN RB

R0 X

R1 X

R2 X

R3 X

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 64 23 31

10

20 FF

30

PC 00
What are the values of R0 and R1. Once program completes?

101

Because we have a limited number of registers, we can’t store all variables in registers,
so we must store some in memory and read them into a register when we need them.
Here is the strategy

1. Read the register value to a predetermined location in memory.
2. Use the register
3. Write the register value back to memory, so that it can be used to store something

else

REGISTER SPILLING

Architecture 8 bit 32 bit 64 bit

ARM X 15 31

Intel x86 X 8 16

Toy ISA 4 X X

102

LET’S CALCULATE WHERE TO JUMP TO

R0 = M[0x20]

R1 = 0x07

If R0 <= 0 set PC= R1

R0 += 1

R0 &= 2

2 Bytes

Memory Address Size of Instruction

0x00
2 Bytes0x02

0x04 1 Byte
0x05 2 Bytes
0x07 2 Bytes

So what address do we want R1 to be?

103

WRITE A LOOP

x = 2

for (i = 0; i < 5; i++){

x+=1

}

x = 2

i = 0

do{

x+=1

i++
}while(i<5)

First, rewrite as a do-while loop. (This due to limitation in Toy ISA) reasons will be clear
later.

104

WRITE A LOOP
R0 = 2
R1 = 0
R2 = PC
R0 += 1
R1 += 1
R3 = R1
R3+= -5
if R3 <=0 then PC = R2

x = 2

i = 0

do{

x+=1

i++
}while(i<5)

But wait is that correct? Translating the condition can be tricky

105

WRITE A LOOP
R0 = 2
R1 = 0
R2 = PC
R0 += 1
R1 += 1
R3 = R1
R3+= -4
if R3 <=0 then PC = R2

x = 2

i = 0

do{

x+=1

i++
}while(i<5)

0x60 02
0x64 0x00
0x5B
0x61 0x01
0x65 0x01
0x0D
0x6D 0xFC

-3 , -2, -1, 0, 1 (five times)

0x7E

106

SOME PERPECTIVE (RISC-V)

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf Available at:

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

107

RISC-V ADD
https://msyksphinz-self.github.io/riscv-
isadoc/html/rvi.html#addi

X86 Add
https://www.felixcloutier.com/x86/add

RISC VS CISC

Detailed Data Sheet: https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://www.felixcloutier.com/x86/add
https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

108

NOW THAT WE HAVE OUR ISA LET’S DESIGN THE
MACHINE

109

A RD
8

CLK

RBRAicode
16

R

INSTRUCTION MEMORY AND INSTRUCTION
REGISTER

immediate

Instruction register (IR)

Our diagram is going to have several
comments so I will not draw the IR

Note: input and output widths on the
Instruction memory. The memory is byte-
addressable but reads 2 bytes at a time

110

A RD
8

CLK
+ 1

CLK

8 8

8-bit
PC

16

1 BYTE AND 2 BYTE INSTRUCTIONS

2

C0

We’ll add a mux that will select
passing one to adder or two.

The mux will be controlled with a
control line C0. But what
component provides the control
signal? Answer the Controller

111

HARDWIRED CONTROL UNIT

icode b C0 …. Cn

6 x 1

….

Icode

b

c0

cn

… …

112

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

RBRAicodeR

113

114

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

Looks like we have a conflict. Thoughts on how we
could fix this?

115

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Let’s execute some sample
instructions

116

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Let’s execute some sample
instructions

117

118

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Draw out the flow here

119

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Changed it to just be
the label

PC

120

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Walk through the flow of
an example instruction

PC

Immediate
8

IM

RBRAicodeR

121

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Again we just need a mux

PC

Immediate
8

IM

C6

IM

122

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Just need a mux

PC

Immediate
8

IM

C6

IM
IM

123

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

PC

Immediate
8

IM

C6

IMIM

C5

0RD2

SF, ZF

Let’s do a sample
instruction

RBRAicodeR

124

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

PC

Immediate
8

IM

C6

IMIM

C5

0RD2

SF, ZF

OUR SINGLE CYCLE TOY PROCESSOR

Fetch Decode
Execute Memory

125

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

PC

Immediate
8

IM

C6

IMIM

C5

0RD2

SF

OUR SINGLE CYCLE TOY PROCESSOR

Write back stages

126

1. How is it implemented?
2. How does it work underhood?

3. Don’t worry we’ll answer this in CSO 2.
1. It is actually a complex hierarchy

including a controller, caches, and
Hardware support for virtual memory
like TLBS (translation lookaside buffers)

2. It doesn’t always return a value in a
single cycle so the controller might
have to insert nops in the pipeline etc.

WHAT ABOUT DETAILS OF THE MAIN MEMORY

Addr DO

DI
WE

C3

RD1

RD2

C5

IM

127

MEMORY HIERARCHY

Figure from: https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

Levels in Speed
and Capacity of
the Memory

Higher levels larger
and slower
memory

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

128

129

WHAT ABOUT FUNCTIONS

F(x,a)

A

F(x,a)

B

F(x,a)

C

Jump back to the main code

130

F(x,a)

A

F(x,a)

B

F(x,a)

C

SAVE PC =
instruction after
the function call

Jump back
to saved
value

SAVE PC =
instruction after
the function call

131

Let’s create a new instruction that will both save the
location to return and jump to the beginning of the
function. We’ll name this our call instruction

Let’s also create an instruction that sets the PC back
to the saved. We’ll name this our return instruction or
ret for short

DEFINING A NEW INSTRUCTION

F(x,a)

A

F(x,a)

B

call

ret

Save pc+2 , set pc = M[pc+1]

pc = Saved Value

132

WHAT ABOUT FUNCTIONS

F(x,a)
What about recursive
functions? Functions
that call themselves

F(x,a)

F(x,a)

F(x1,a1)

F(x2,a2)

Now we need to keep track
of both the location return
to (multiple function calls
and the register state of
function before the call)

F(x,a)

133

We are going to a region of memory that will hold the
stack of function states and their associated return
addresses.

THE STACK
F(x,a)

Return address 1
F(x1,a1)

Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

By convention keep adding
new things to the stack by
growing it to lower addresses

0xFC

134

We also define a new register that holds the location
of the TOP of the stack in memory. We’ll name this
register RSP

THE STACK

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFC

135

We’ll also create two instructions that will add and
remove values from the stack.

The push instruction will decrement the RSP and to
the top of the stack

Example push(0x04)

PUSH AND POP INSTRUCTIONS

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFC

136

We’ll also create two instructions that will add and
remove values from the stack.

The push instruction will decrement the RSP and to
the top of the stack

Example push(0x04)

PUSH AND POP INSTRUCTIONS

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFB

0x040xFB

137

We’ll also create two instructions that will add and
remove values from the stack.

While the pop instruction increments RSP and returns
the value at the top of the stack

Example x = pop()

PUSH AND POP INSTRUCTIONS

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFB

0x040xFB

138

We’ll also create two instructions that will add and
remove values from the stack.

While the pop instruction returns the value at the top
of the stack and then increments RSP

Example x = pop() returns 0x04

PUSH AND POP INSTRUCTIONS

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFC

139

We need to define a calling convention. The rules that
we’ll follow when we call a function.
1. For our simple processor functions are limited to

2 parameters.
2. The first parameter will be stored in R2
3. The second parameter will be stored in R3
4. The return value of the function will be stored in

R0
5. If the function uses any other registers save them

before modifying them and restore them before
returning.

input = 0xFF
shiftAmount = 0x02
output = left_shift(input, shiftAmount)

WHAT ABOUT THE FUNCTION PARAMETERS

R2 = 0xFF
R3 = 0x02
call left_shift
R0 //Contains result

140

Could you implement the left_shift function using our
toy ISA?

output = left_shift(input, shiftArmount)

Hint: Left shifts by 1 is equivalent to multiplying
the number by 2.

THOUGHT EXPERIMENTS

141

ISA EXTENDED BY SETTING R BIT TO 1

icode b operation

0

0 Decrement rsp and push the contents of rA to the stack

1 Pop the top value from the stack into rA and
increment rsp

2 Push pc+2 onto the stack, set pc = M[pc+1]

3 pc = pop the top value from the stack
If b is not 2, update the pc as normal.

142

A RD
8

+ 1

CLK

8 8

8-bit
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

PC

Immediate
8

IM

C6

IMIM

C5

0RD2

SF

COULD YOU ADD PUSH, POP, CALL AND RET?

Write back stages

143

THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

144

You can express our design in a
programming language called VHDL.

Simulate your processor in model sim
And then send off the TSMC, UMC, or
Samsung to get fabricated.

Don’t worry you’ll not have to write
VHDL in this course. But ECE does offer
courses. Maybe I will rework or
simulation lab to give us a taste of this
language.

WHAT ABOUT FABRICATING THESE
1
2
signal and_gate : std_logic;
and_gate <= input_1 and input_2;
1
2
3
4
5
6
7

entity example_and is
port (
input_1 : in std_logic;
input_2 : in std_logic;
and_result : out std_logic

);
end example_and;

1
2
3
4
5
6

architecture rtl of example_and is
signal and_gate : std_logic;

begin
and_gate <= input_1 and input_2;
and_result <= and_gate;

end rtl;

145

THE MAP (THE CODE)
0000000000001149 <main>:
 1149: f3 0f 1e fa endbr64
 114d: 55 push %rbp
 114e: 48 89 e5 mov %rsp,%rbp
 1151: 48 8d 05 ac 0e 00 00

lea 0xeac(%rip),%rax # 2004
<_IO_stdin_used+0x4>
 1158: 48 89 c7 mov %rax,%rdi
 115b: e8 f0 fe ff ff call 1050 <puts@plt>
 1160: b8 00 00 00 00 mov $0x0,%eax
 1165: 5d pop %rbp
 1166: c3 ret

146

THE MAP (THE CODE)
#include <stdio.h>
int main() {

printf("Hello, World!");
return 0;

}

0000000000001149 <main>:
 1149: f3 0f 1e fa endbr64
 114d: 55 push %rbp
 114e: 48 89 e5 mov %rsp,%rbp
 1151: 48 8d 05 ac 0e 00 00

lea 0xeac(%rip),%rax # 2004
<_IO_stdin_used+0x4>
 1158: 48 89 c7 mov %rax,%rdi
 115b: e8 f0 fe ff ff call 1050 <puts@plt>
 1160: b8 00 00 00 00 mov $0x0,%eax
 1165: 5d pop %rbp
 1166: c3 ret We will not cover this conversion in

detail. CS 4620 - Compilers
 is a class dedicated to building and
understanding the program designed
to do this conversion.

We’ll focus on understanding the
output of the program and how this
output gets executed on a machine

147

148

The Stack is a region of memory

THE STACK

150

OUR JOURNEY SO FAR

151

152

RISC-V MACHINE

153

RISC-V MACHINE

154

THE MAP (THE CODE)
#include <stdio.h>
int main() {

printf("Hello, World!");
return 0;

}

0000000000001149 <main>:
 1149: f3 0f 1e fa endbr64
 114d: 55 push %rbp
 114e: 48 89 e5 mov %rsp,%rbp
 1151: 48 8d 05 ac 0e 00 00

lea 0xeac(%rip),%rax # 2004
<_IO_stdin_used+0x4>
 1158: 48 89 c7 mov %rax,%rdi
 115b: e8 f0 fe ff ff call 1050 <puts@plt>
 1160: b8 00 00 00 00 mov $0x0,%eax
 1165: 5d pop %rbp
 1166: c3 ret We will not cover this conversion in

detail. CS 4620 - Compilers
 is a class dedicated to building and
understanding the program designed
to do this conversion.

We’ll focus on understanding the
output of the program and how this
output gets executed on a machine

155

THE ISA ALSO INCLUDES FLOATING LAYOUT
SUPPORTED AND REGISTER AND THEIR

DESCRIPTION

https://www.elsevier.com/__data/assets/pdf_file/0011/
297533/RISC-V-Reference-Data.pdf

Let’s look at the section that describes floating point
And instruction encodings. Focus many on the
second page

https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf
https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

156

