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1. Discuss the ideas from our 
last 14 lectures. 

2. Only 25 lectures left after 
this one. (Yeah, it goes by 
fast) 

3. Topics, and tools for 
continuing your hardware 
journey

4. Now we move to software 
x86 assembly and C  
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THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V 

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V
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BOTTOM-UP APPROACH
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THIS WERE WE’LL START OUR JOURNEY
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• Logic gates are circuits that perform logic 
functions

• such as AND, OR, (NOT) , etc
• Logic gates have different symbols and their 

behavior is normally described using a truth table.
•    

WHAT ARE LOGIC GATES
AND

Y = AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A
B Y
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SINGLE INPUT VS  TWO INPUT GATES

NOT

Y = A

A Y
0 1
1 0

A Y

OR

Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A
B Y
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MORE LOGIC GATES
XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

XOR NAND NOR

Y = A + B Y = AB Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

A
B Y A

B Y A
B Y

1
0
0
1
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PULL UP PULL DOWN  NETWORKS

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

NOT

Y = A

A Y
0 1
1 0

A Y
VDD

A Y

GND

N1

P1
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NOT GATE

NOT

Y = A

A Y
0 1
1 0

A Y
VDD

A Y

GND

N1

P1
A P1 N1 Y

0 ON OFF 1

1 OFF ON 0
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A

B

Y

N2
N1

P2 P1
NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

NAND gates are Turning complete you can 
build all other gates from them 
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NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y
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14



15
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THE NAND 
GAME
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WHAT IS THE OUTPUT OF 
THIS CIRCUIT?

A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
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THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V 

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V
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1 BIT MUX

Y
0 0
0 1
1 0
1 1

0
1
0
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0

1

S

D0
Y

D1

D1 D0S Y
0
1 D1

D0

S
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2 BIT MUX

with a Karnaugh map or read off by inspection (Y is 1 if S= 0 AND D0 is
1 OR if S= 1 AND D1 is 1).

Alternatively, multiplexers can be built from tristate buffers as shown
in Figure 2.56. The tristate enables are arranged such that, at all times,
exactly one tristate buffer is active. When S= 0, tristate T0 is enabled,
allowing D0 to flow to Y. When S= 1, tristate T1 is enabled, allowing
D1 to flow to Y.

Wider Multiplexers
A 4:1 multiplexer has four data inputs and one output, as shown in
Figure 2.57. Two select signals are needed to choose among the four data
inputs. The 4:1 multiplexer can be built using sum-of-products logic,
tristates, or multiple 2:1 multiplexers, as shown in Figure 2.58.

The product terms enabling the tristates can be formed using AND
gates and inverters. They can also be formed using a decoder, which we
will introduce in Section 2.8.2.

Wider multiplexers, such as 8:1 and 16:1 multiplexers, can be built
by expanding the methods shown in Figure 2.58. In general, an N:1 mul-
tiplexer needs log2N select lines. Again, the best implementation choice
depends on the target technology.

Multiplexer Logic
Multiplexers can be used as lookup tables to perform logic functions.
Figure 2.59 shows a 4:1 multiplexer used to implement a two-input

D1

Y

D0

S

S 00 01

0

1

Y

11 10
D1:0

0

0

1

0

1

1

0

1

Y = D0S + D1S
Figure 2.55 2:1 multiplexer
implementation using two-level
logic

Y

D0

S

T0

T1

Y = D0S + D1S

D1

Figure 2.56 Multiplexer using
tristate buffers

00

S1:0

D0
D1 Y

01
10
11

D2
D3

2

Figure 2.57 4:1 multiplexer

Shorting together the outputs of
multiple gates technically violates
the rules for combinational
circuits given in Section 2.1.
But because exactly one of the
outputs is driven at any time,
this exception is allowed.

84 CHAPTER TWO Combinational Logic Design
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2 BIT MUX
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Y

D0

S

S 00 01

0

1

Y

11 10
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0

0

1

0

1

1

0
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D0

S

T0
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tristate buffers

00

S1:0
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THE IDEA 

ADDER
A

B
A +B
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Our gates only support 0 and 1s. 
How can we represent other decimal numbers?
How can we present negative numbers?
What about fractions J? 

THE CHALLENGE
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BINARY 

11012 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 1310
one
eight

2's colum
n

4's colum
n

8's colum
n

one
four

no
two

one
one

1's colum
n
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4-BIT ADDER

ADDER

A

B

A + B

Carry



Sign Bit
Signed

0

1

2

3

4

5

6

7

-0

-1

-2

-3

-4

-5

-6

-7

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111



Bias
Signed

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Floor((2n -1)/2) = 7



Two’s 
Complement

Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111
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Hex Digit Decimal Binary
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

HEXADECIMAL
Convert 00101110 to hexadecimal  Answer: 2E 

Group them
0010 = 2
1110 = E
Final 0x2E

• Some programming languages uses prefixes
• Hex: 0x

• 0x23AB = 23AB16

• Binary: 0b
• 0b1101 = 11012
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BITWISE  OR |

11002
01102
11102

|

#python example 
x = 12
y = 6
z = x | y 
print(z)
#prints 14 
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BITWISE  OR XOR ^

11002
01102
10102

^

#python example 
x = 12
y = 6
z = x ^ y 
print(z)
#prints 10 
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File the second bit of x. 1 => 0 and 0 => 1

FLIPPING BITS

11002

11102

^ 00102
What if the nth bit was 1 instead?
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The Idea of masking with can extra a certain section of 
bits by anding. 

MASKING (EXTRACTING BITS)

110111002

000011002
& 000011112

Lower 4  bits extracted

#python example 
x = 220
mask = 0x0F
x = x & mask
print(x)
#prints 12
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0010 parity bit is 1
0110 parity bit is 0

PARITY

parity = 0 
repeat 32 times: 
     parity ^= (x&1) 
      x >>= 1

0010
0
0

⊕

0010
0⊕

1
0010

1⊕
1

0010
1⊕

1

Result of xor

Final Parity
bit

Partity bit
starting 
value

Result 
shifted one

Same as just xoring each bit 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
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PARALLEL EVALUATION 
Observe that xor is both transitive and associative; thus we can re-write

x0⊕x1⊕x2⊕x3⊕x4⊕x5⊕x6⊕x7

using transitivity as
x0⊕x4⊕x1⊕x5⊕x2⊕x6⊕x3⊕x7

and using associativity as
(x0⊕x4)⊕(x1⊕x5)⊕(x2⊕x6)⊕(x3⊕x7)

and then compute the contents of all the parentheses at once via
x ^ (x>>4). 
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PARALLEL EVALUATION 

x0⊕x1⊕x2⊕x3⊕x4⊕x5⊕x6⊕x7
using transitivity as

x0⊕x4⊕x1⊕x5⊕x2⊕x6⊕x3⊕x7

and using associativity as
(x0⊕x4)⊕(x1⊕x5)⊕(x2⊕x6)⊕(x3⊕x7)

and then compute all at once via
x ^ (x>>4). 

x ^= (x>>16) 
x ^= (x>>8) 
x ^= (x>>4) 
x ^= (x>>2)
 x ^= (x>>1) 
parity = (x & 1)



37

ENDIANNESS

Little ENDIAN
0x0000005C (9210)

Less significant at Lowest 
address 
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ENDIANNESS

Big ENDIAN
0x5C000000 (154350387210) 

Most significant Byte at 
lowest address
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ENDIANNESS
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• How can we represent decimal values in binary?
• Why do errors like these occur?  

>>> 0.1 + 0.1 + 0.1 == 0.3
False
>>> (0.1 + 0.1 + 0.1) == 0.3
False
>>> x = 0.1 + 0.1 + 0.1
>>> x
0.30000000000000004

>>> 0.3 + 0.3 + 0.3 
>>> 0.8999999999999999

FLOATING POINT

Floating point 
rounding error 
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IEEE 754

sign MantissaExponent

number =  sign( 1 + Mantissa) x 2exponent – bias

On 32 bit machines bias in normal 127  (Yes this is 
bias representation we talked about earlier)
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0.1101 = 1.101 x 2-1
Keep going until you get to your first 1.

BINARY STRING

0.01101 = 1.101 x 2-2

0.001101 = 1.101 x 2-3
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Let’s convert 0.8125 to floating-point representation

CONVERSION EXAMPLE

1 1 0 1

2-1 2-2 2-3 2-4

1 x 1/2 + 1x 1/4 + 0 x 1/8 + 1 x 1/16 = 13/16

0.8125 x 2=1.6250 1 
0.6250 x 2=1.2500 1
0.2500 x 2=0.5000 0
0.5000 x 2=1.0000 1

0.1101
= 1.101 x 2-1
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CONVERSION EXAMPLE PART 2

0.1101 = 1. 101 x 2-1

Sign: 0
Mantissa: 101
Exponent: -1 + 127 = 126(d)
= 1111110(b)

0 01111110 1010000 00000000 00000000
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Just like the 1/3 0.1 keeps repeating 

CONVERSION  PART 3

0.1 x 2 = 0.2  0
0.2 x 2 = 0.4  0 
0.4 x 2 = 0.8  0
0.8 x 2  = 1.6  1
0.6 x 2 =  1. 2  1
0.1 x 2 = 0.2  0
…… repeats …

0 01111011 1001100 11001100 1100110

123

(-1)s x (1 + m) × 2exponent – bias  

(-1)0 x (1 +                     ) × 2123 - 127 

½ + 1/24 + 1/25 + 1/28 + 1/29 + 
1/212 + 1/213 + 1/216 + 1/217 + 
1/220 + 1/221 

0.0999999940395355224609375 = 

No quite 0.1
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GREAT NOW WE HAVE ALL WE NEED TO THINK 
ABOUT DESIGNING OUR ADDER
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4-BIT ADDER

ADDER

A

B

A + B

Carry

Great now let’s build it with gates. 
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1 1 1 1     ß Carries 
   0 1 1 1 
+ 1 0 1 1
   0 0 1 0  

Let start by building a half adder 
something that just adds two bits.  

Let’s build a truth table. 

A  B A + B      C.out
0  0 0              0 
0 1 1              0 
1 0 1 0
1  1 0              1 
  

ADDING 
We can implement 
A + B with an XOR gate 
And the C.out (Carry out)
With an AND gate

A B

A + B

C.out
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http://www.falstad.com/circuit/circuitjs.html?ctz=
CQAgjCAMB0l3BWc0FwCwCY0HYEA4cEMElURTJy
BTAWjDACgwE0QMs21KBmANj06VKGKOSZl2rMGl
Z8B01sNEIGAGXAZ5vSnkphtbUQDMAhgBsAzlXJQ
1GgZJC62HEZVOXrSSAwDu9lykDRx9-
fWEOcIDQ8AMwTUDov1iI1kcQ5PitPQBOESiYsDyU
8GLiXlswsoQK9JrK0vzgyIMfAFkQOXAZEDR9brS2F
AYOrqxKPtquQwxhoA 

HALF ADDER DEMO
https://tinyurl.com/ygpea8v4 

https://tinyurl.com/ygpea8v4
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1 1 1 1     ß Carries 
   0 1 1 1 
+ 1 0 1 1
   0 0 1 0  

ADDING 

We can implement 
A + B with an XOR gate 
And the C.out (Carry out)
With an AND gate

A B

A + B

C.out

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S      = A Å B
Cout   = AB

Half
Adder
A B

S

Cout +

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S     = A Å B Å Cin
Cout  = AB + ACin + BCin

Full
Adder

Cin

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

1
0
0
1

0
1
1
1

A B

S

Cout Cin+
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A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S      = A Å B
Cout   = AB

Half
Adder
A B

S

Cout +

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S     = A Å B Å Cin
Cout  = AB + ACin + BCin

Full
Adder

Cin

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

1
0
0
1

0
1
1
1

A B

S

Cout Cin+

1 1 1 1     ß Carries 
   0 1 1 1 
+ 1 0 1 1
   0 0 1 0  

Note on special case 3 input xor.
Draw the three gates.   Really 
Three xors stacked.  
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A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S      = A Å B
Cout   = AB

Half
Adder
A B

S

Cout +

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout

0
0
0
1

S     = A Å B Å Cin
Cout  = AB + ACin + BCin

Full
Adder

Cin

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

1
0
0
1

0
1
1
1

A B

S

Cout Cin+ 1 1 1 1     ß Carries 
   0 1 1 1 
+ 1 0 1 1
   1 1 1 0  

C.out has been rewritten to reduce the number of 
gates needed. 
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Next let’s build a full adder

S31

A30 B30

S30

A1 B1

S1

A0 B0

S0

C30 C29 C1 C0
Cout ++++

A31 B31

Cin

RIPPLE CARRY ADDER 
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1 1 1 1     ß Carries 
   0 1 1 1 
+ 1 0 1 1
    0 0 1 0  

RIPPLE CARRY ADDER 
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THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V 

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V
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Rising Edge

CLOCKS EDGES

0

1

Single Cycle

Time 
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Falling Edge. 

CLOCKS EDGES

0

1

Single Cycle

Time 

We will build a 
single cycle 
machine it will 
complete all the 
computation in 
a single cycle
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A clock is something that produces a periodic signal

USING RING OSCILLATORS TO GENERATE CLOCKS

Frequency = 1/(2*t*n) 
Where t is time delay of an inverter and n is 
number of inverters 

Let’s walk through 
an example 
assume that Q 
starts of as 0
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Goal
1. Understand the behavior of a positive edge-

triggered D flip-flop.
• How do we store a bit
• What happens when the clock changes
• What does it mean to be a positive 

edge triggered flip flop
• What is Q and Q

STORING SINGLE 

D Q

QClock
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Use this link to experiment with the flipflop 
during lecture. Try different things and see how it 
works
https://tinyurl.com/2dhk5kvg 

http://www.falstad.com/circuit/circuitjs.html?ctz=
CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIx
AUgoqoQFMBaMMAKDASUPxABZsUQGPD178oFF
gHcQXPKIE88VPgMhSZ3HoRGLl2qCwAyvJfN6KzVC
ADMAhgBsAznWpqASib064vfRAFgPijQSMFIVDAIL
ACygpA6YkrKYlRhLAD21PrKkKSu0BBWIADyAK4AL
gAOFRngMiI5eeGw8GSECIQo4SABINggAJYAdtXlt
QLZvLnE+fC5GO2d3QIC-QDG9ulrANYsQA 

BUILT SIMULATOR VERSION

https://tinyurl.com/2dhk5kvg
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THE FLIP FLOP HOLD HOLDS THE VALUE FOR A 
CLOCK CYCLE

D Q

QClock

1
1

0

0

clock

D

Q
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BUILDING A REGISTER FROM FLIP FLOPS

D Q

CLK

1
D Q

CLK

0
D Q

CLK

0

Removed Q (bar) for reability 

0
0
1
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REGISTER SYMBOLS

CLK

3
Data outData in
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Let’s put it all together and build a 3-bit counter
Circuit that counts from 
000,
001,
010, 
011,
100,
101,
110,
 111

3-BIT COUNTER

CLK

3
Data outData in

+
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THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V 

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V
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• To track where we are in a program

PROGRAM COUNTER

CLK

D1 Q1D0 Q0 Dn Qn

…

n-bit Register

+
1

PCNext PC

CLK

n n

n-bit PC

n-bit Reg
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MEMORY COMPONENTS OF A PROCESSOR

32 32

CLK

A
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

RD

Register
File

32

PCPCNext
5

5

32

32

32

32

A RD
Data

Memory
WD

WE

CLK

32

32

32

5

CLK
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• Temporary storage location
• Stores immediately needed variables
• External interface

• Addresses: A1, A2, A3
• Data: RD1, RD2, WD3
• Enable: WE3
• Clock: CLK

REGISTER FILE
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READ FROM A REGISTER FILE
Din

Doutn n

Din
Doutn n

Din
Doutn n

Din
Doutn n

Reg 0

Reg 1

Reg 2

Reg 3

n4:1
MUX

A1

RD1

n

A2
2

RD24:1
MUX

2

D

D

D

D



DEMULTIPLEXER (DEMUX)
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• Connects one input to one of the N outputs
• Select input is log2N bits – control input

Example:       1:2 Demux

S Y0 Y1

0 D 0

1 0 D

D 1:2
DEMUX

Y0

Y1

S Y0

Y1

D

S
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WRITE TO A REGISTER FILE
Dout

n

n

CLK

Doutn

Dout
n

Doutn

Reg 0

Reg 1

Reg 2

Reg 3

D

D

D

D

WE

WD

1:4
DEMUX

A3
2
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• Stores the program

Ø Read data (RD) for a given address (A)

INSTRUCTION MEMORY

For this class, we will assume we cannot write to Instruction Memory.
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• Contains data needed by the program

Ø Read data (RD) from a given address (A)
Ø Write data (WD) to a given address (A)

DATA MEMORY
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EXERCISE

Answer:
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MEMORY HIERARCHY

Figure from: https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

Levels in Speed 
and Capacity of 
the Memory

Higher levels larger 
and slower 
memory

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/
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ARITHMETIC LOGIC UNIT 
A B

N:1
MUX C

Function Code

Adder

Divider

Multiplier

AND

……

3232

32
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ALU SYMBOL AND INPUTS

A

B

Flags example Carry Bit

Result

Function Code
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TOY ISA AND PROCESS 
VERSION 0.1

WE’LL MAKE IT BETTER DON’T WORRY
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TINY PROGRAM TO ASSEMBLY

m = 4 
x = 2 
b = -1
y = m*x*b

Looks like we need two types on 
instructions  

1. An instruction to load values
2. An instruction to computation 

(multiply)
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LET’S DECIDE HOW WE ARE GOING TO LAYOUT 
OUR BITS

m = 3 
x = 2 
b = -1

1. An instruction to load values into Registers

R0 =3
R1 = 2
R2 = -1

ValueR

8 bits

XXX

3-bits Unused

We just make 
these zeros
XXX = 000
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NOW LET’S TRANSLATE OUT PROGRAM TO
ONES  AND ZERO  

m = 4 

x = 2 

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

ValueRXXX

01100000

01001000

11110000

0x03

0x0A

0x17



FULL ISA
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Let look at each 
of these 
instructions 
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GREAT WE HAVE OUR FIRST INSTRUCTION

ValueRAXXX

RA = Value
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+
1

PCNext

CLK

8 8

n-bit PC

8-bit Reg

A RD

0x03
0x0A 
0x17

8 8

AUTOMATICALLY FETCH A NEW INSTRUCTION 
EVERY CLOCK CYCLE 

CLK

0x03



85



86

+
1

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
0x0A 
0x17

8 8

CLK

0x03

A1 RD1

A2 RD2
A3
WD3

01100000

2
3

WE

1

Our program would have loaded 
values into the register file

R0 =3
R1 = 2
R2 = -1
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OPCODE

Multiply Registers

XXXRA0

1-bit

y = m*x*b R0 *=  R1
R0 *=  R2

RB

Finally, we need an opcode to distinguish our load 
instruction from our multiple 

0 --> Multiply
1 --> Save Value 
to register  
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ENCODING

y=m*x*b

Let’s multiply value in Registers

R0 *=  R1

R0 *=  R2

0x20

0x40

0x17

XXXRA0 RB

000000 01

000000 10



89

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

000000 10

R0 = 6
R1 = 2
R2 = -1

6

-1

6

3
2

6

Remember 
writing 
just a 
occurs at 
the edge
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NOTE WE ALSO NEED TO UPDATE THE 
ENCODING OF OUR LOADS

m = 4 

x = 2 

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

01100

01001

11110

0x83

0x8A

0x97

ValueRA1 RB

1 00

1 00

1 00



91

m = 4 

x = 2 

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

01100

01001

11110

0x83

0x8A

0x97

ValueRA1 RB

1 00

1 00

1 00

y=m*x*b

Let’s multiply value in Registers
R0 *=  R1

R0 *=  R2

0x20

0x40

0x17

XXXRA0 RB

000000 01

000000 10
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INSTEAD GOING INSTRUCTION BY INSTRUCTION
LET’S DESIGN THE ISA AND THE MACHINE
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TOY INSTRUCTION SET ARCHITECTURE (ISA)
The ISA defines: 
1. Instructions and their layout
2. Data types 
3. Registers we’ll have  

How instructions are laid out in our ISA
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ENCODING OUR FIRST INSTRUCTION

R icode a b
7    6     5     4    3    2    1    0         

immediate

byte at pc byte at pc + 1 

7    6     5     4    3    2    1    0         

RA = RBicode 0

Try to encode the following instruction R0 = R1 

0 0 0 0 0 0 0 1
7    6     5     4    3    2    1    0         

Not used 
This 
instruction 
is not using 
a value 
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R icode a b
7    6     5     4    3    2    1    0         

immediate

7    6     5     4    3    2    1    0         

icode b Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1] 

R0 = 8
R1 = -1
R0 += R1

0 110 00 00 0 0 0 0 1 0 0 0

0x60 0x08
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R0 = 8
0x60

0x08

0x64

0xFF

0x11

R1 = -1

R0 += R1

{
{Notice that we have to 

increment the Program 
Counter by two for 
these instructions. 
Because they are two 
bytes long while the 
other instructions are 
only 1 byte 
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THE FLOW

0x60 0x08 0x64 0xFF 0x11

R0 = 8
R1 = -1
R0 += R1

x = 8
y = -1
z = x + y
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FULL ISA
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We’ll give the 
full description 
of ISA at the 
begin of every 
exam. In fact this 
a picture of what 
we will give you. 
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Registers

READ FROM MEMORY ADDRESS STORED IN RB 

R0 X

R1 X

R2 X

R3 X

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 64 23 31

10

20 FF

30

PC 00
What are the values of R0 and R1. Once program completes? 
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Because we have a limited number of registers, we can’t store all variables in registers, 
so we must store some in memory and read them into a register when we need them. 
Here is the strategy

1. Read the register value to a predetermined location in memory. 
2. Use the register
3. Write the register value back to memory, so that it can be used to store something 

else

REGISTER SPILLING

Architecture 8 bit 32 bit 64 bit

ARM X 15 31

Intel x86 X 8 16

Toy ISA 4 X X 
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LET’S CALCULATE WHERE TO JUMP TO

R0 = M[0x20]

R1 = 0x07

If R0 <= 0 set PC= R1

R0 += 1

R0 &= 2

2 Bytes

Memory Address Size of Instruction

0x00
2 Bytes0x02

0x04 1 Byte
0x05 2 Bytes
0x07 2 Bytes

So what address do we want R1 to be?
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WRITE A LOOP 

x = 2

for (i = 0; i < 5; i++){

x+=1

}

x = 2

i = 0

do{

x+=1

i++
}while(i<5)

First, rewrite as a do-while loop. (This due to limitation in Toy ISA) reasons will be clear 
later. 
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WRITE A LOOP 
R0 = 2 
R1 = 0
R2 = PC
R0 += 1
R1 += 1
R3 = R1
R3+= -5
if R3 <=0 then PC = R2 

x = 2

i = 0

do{

x+=1

i++
}while(i<5)

But wait is that correct? Translating the condition can be  tricky
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WRITE A LOOP 
R0 = 2 
R1 = 0
R2 = PC
R0 += 1
R1 += 1
R3 = R1
R3+= -4
if R3 <=0 then PC = R2 

x = 2

i = 0

do{

x+=1

i++
}while(i<5)

0x60 02
0x64 0x00
0x5B
0x61 0x01
0x65 0x01
0x0D
0x6D 0xFC

-3 , -2, -1, 0, 1 (five times) 

0x7E
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SOME PERPECTIVE (RISC-V)

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf Available at:

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
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RISC-V ADD 
https://msyksphinz-self.github.io/riscv-
isadoc/html/rvi.html#addi 

X86 Add
https://www.felixcloutier.com/x86/add 

RISC VS CISC

Detailed Data Sheet: https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf 

https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://www.felixcloutier.com/x86/add
https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf
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NOW THAT WE HAVE OUR ISA LET’S DESIGN THE 
MACHINE
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A RD
8

CLK

RBRAicode
16

R

INSTRUCTION MEMORY AND INSTRUCTION 
REGISTER

immediate

Instruction register (IR)

Our diagram is going to have several 
comments so I will not draw the IR

Note: input and output widths on the 
Instruction memory. The memory is byte-
addressable but reads 2 bytes at a time
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A RD
8

CLK
+ 1

CLK

8 8

8-bit 
PC

16

1 BYTE AND 2 BYTE INSTRUCTIONS

2

C0

We’ll add a mux that will select 
passing one to adder or two. 

The mux will be controlled with a 
control line C0. But what 
component provides the control 
signal? Answer the Controller
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HARDWIRED CONTROL UNIT

icode b C0 …. Cn

6 x 1

….

Icode

b

c0

cn

… …
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

RBRAicodeR
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

Looks like we have a conflict. Thoughts on how we 
could fix this? 
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Let’s execute some sample 
instructions 
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Let’s execute some sample 
instructions 
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Draw out the flow here
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Changed it to just be 
the label 

PC
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Walk through the flow of 
an example instruction

PC

Immediate 
8

IM

RBRAicodeR
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Again we just need a mux

PC

Immediate 
8

IM

C6

IM
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

Just need a mux

PC

Immediate 
8

IM

C6

IM
IM
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

PC

Immediate 
8

IM

C6

IMIM

C5

0RD2

SF, ZF

Let’s do a sample 
instruction

RBRAicodeR
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

PC

Immediate 
8

IM

C6

IMIM

C5

0RD2

SF, ZF

OUR SINGLE CYCLE TOY PROCESSOR

Fetch Decode
Execute Memory
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

PC

Immediate 
8

IM

C6

IMIM

C5

0RD2

SF

OUR SINGLE CYCLE TOY PROCESSOR

Write back stages
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1. How is it implemented? 
2. How does it work underhood?

3. Don’t worry we’ll answer this in CSO 2. 
1. It is actually a complex hierarchy 

including a controller,  caches, and 
Hardware support for virtual memory 
like TLBS (translation lookaside buffers)

2. It doesn’t always return a value in a 
single cycle so the controller might 
have to insert nops in the pipeline etc.  

WHAT ABOUT DETAILS OF THE MAIN MEMORY

Addr DO

DI
WE

C3

RD1

RD2

C5

IM
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MEMORY HIERARCHY

Figure from: https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

Levels in Speed 
and Capacity of 
the Memory

Higher levels larger 
and slower 
memory

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/
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WHAT ABOUT FUNCTIONS

F(x,a)

A

F(x,a)

B

F(x,a)

C

Jump back to the main code
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F(x,a)

A

F(x,a)

B

F(x,a)

C

SAVE PC = 
instruction after 
the function call

Jump back 
to saved 
value

SAVE PC = 
instruction after 
the function call
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Let’s create a new instruction that will both save the 
location to return and jump to the beginning of the 
function.  We’ll name this our call instruction

Let’s also create an instruction that sets the PC back 
to the saved. We’ll name this our return instruction or 
ret for short
 

DEFINING A NEW INSTRUCTION

F(x,a)

A

F(x,a)

B

call

ret

Save pc+2 , set pc = M[pc+1]

pc = Saved Value
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WHAT ABOUT FUNCTIONS

F(x,a)
What about recursive 
functions?  Functions 
that call themselves

F(x,a)

F(x,a)

F(x1,a1)

F(x2,a2)

Now we need to keep track 
of both the location return 
to (multiple function calls 
and the register state of 
function before the call)

F(x,a)
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We are going to a region of memory that will hold the 
stack of function states and their associated return 
addresses. 

THE STACK
F(x,a)

Return address 1
F(x1,a1)

Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

By convention keep adding 
new things to the stack by 
growing it to lower addresses

0xFC
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We also define a new register that holds the location 
of the TOP of the stack in memory. We’ll name this 
register RSP

THE STACK

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFC
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We’ll also create two instructions that will add and 
remove values from the stack. 

The push instruction will decrement the RSP and to 
the top of the stack

Example push(0x04)

PUSH AND POP INSTRUCTIONS

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFC
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We’ll also create two instructions that will add and 
remove values from the stack. 

The push instruction will decrement the RSP and to 
the top of the stack

Example push(0x04)

PUSH AND POP INSTRUCTIONS

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFB

0x040xFB
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We’ll also create two instructions that will add and 
remove values from the stack. 

While the pop instruction increments RSP and returns 
the value at the top of the stack

Example x = pop()

PUSH AND POP INSTRUCTIONS

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFB

0x040xFB



138

We’ll also create two instructions that will add and 
remove values from the stack. 

While the pop instruction returns the value at the top 
of the stack and then increments RSP

Example x = pop() returns 0x04 

PUSH AND POP INSTRUCTIONS

F(x1,a1)
Return address 2

0xFF

F(x3,a3)
Return address 1

0xFE

0xFD

0xFC

RSP
F(x,a)

Return address 1

0xFC
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We need to define a calling convention. The rules that 
we’ll follow when we call a function. 
1. For our simple processor functions are limited to 

2 parameters. 
2. The first parameter will be stored in R2 
3. The second parameter will be stored in R3
4. The return value of the function will be stored in 

R0
5. If the function uses any other registers save them 

before modifying them and restore them before 
returning. 

input = 0xFF 
shiftAmount = 0x02 
output = left_shift(input, shiftAmount)  

WHAT ABOUT THE FUNCTION PARAMETERS

R2 = 0xFF 
R3 = 0x02 
call left_shift
R0 //Contains result
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Could you implement the left_shift function using our 
toy ISA?

output = left_shift(input, shiftArmount)  

Hint: Left shifts by 1 is equivalent to multiplying 
the number by 2. 

THOUGHT EXPERIMENTS
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ISA EXTENDED BY SETTING R BIT TO 1 

icode b operation

0

0 Decrement rsp and push the contents of rA to the stack

1 Pop the top value from the stack into rA and 
increment rsp

2 Push pc+2 onto the stack, set pc = M[pc+1]

3 pc = pop the top value from the stack
If b is not 2, update the pc as normal.
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A RD
8

+ 1

CLK

8 8

8-bit 
PC

16

2

C0

A1 RD1

A2 RD2

A3
WD3

WE

C1

C2

Addr DO

DI
WE

C3

RD1

RD2

C4

PC

Immediate 
8

IM

C6

IMIM

C5

0RD2

SF

COULD YOU ADD PUSH, POP, CALL AND RET?

Write back stages
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THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V 

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V
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You can express our design in a 
programming language called VHDL. 

Simulate your processor in model sim 
And then send off the TSMC, UMC, or 
Samsung to get fabricated. 

Don’t worry you’ll not have to write 
VHDL in this course. But ECE does offer 
courses. Maybe I will rework or 
simulation lab to give us a taste of this 
language.  
 

WHAT ABOUT FABRICATING THESE 
1
2
signal and_gate : std_logic;
and_gate <= input_1 and input_2;
1
2
3
4
5
6
7

entity example_and is
port (
input_1  : in  std_logic;
input_2  : in  std_logic;
and_result : out std_logic

);
end example_and;

1
2
3
4
5
6

architecture rtl of example_and is
signal and_gate : std_logic;

begin
and_gate <= input_1 and input_2;
and_result <= and_gate;

end rtl;
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THE MAP (THE CODE)
0000000000001149 <main>:
  1149: f3 0f 1e fa      endbr64
  114d: 55          push  %rbp
  114e: 48 89 e5       mov   %rsp,%rbp
  1151: 48 8d 05 ac 0e 00 00 

lea   0xeac(%rip),%rax     # 2004 
<_IO_stdin_used+0x4>
  1158: 48 89 c7       mov   %rax,%rdi
  115b: e8 f0 fe ff ff    call  1050 <puts@plt>
  1160: b8 00 00 00 00    mov   $0x0,%eax
  1165: 5d          pop   %rbp
  1166: c3          ret  
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THE MAP (THE CODE)
#include <stdio.h>
int main() {

printf("Hello, World!");
return 0;

}

0000000000001149 <main>:
  1149: f3 0f 1e fa      endbr64
  114d: 55          push  %rbp
  114e: 48 89 e5       mov   %rsp,%rbp
  1151: 48 8d 05 ac 0e 00 00 

lea   0xeac(%rip),%rax     # 2004 
<_IO_stdin_used+0x4>
  1158: 48 89 c7       mov   %rax,%rdi
  115b: e8 f0 fe ff ff    call  1050 <puts@plt>
  1160: b8 00 00 00 00    mov   $0x0,%eax
  1165: 5d          pop   %rbp
  1166: c3          ret  We will not cover this conversion in 

detail. CS 4620 - Compilers
 is a class dedicated to building and 
understanding the program designed 
to do this conversion. 

We’ll focus on understanding the 
output of the program and how this 
output gets executed on a machine
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The Stack is a region of memory 

THE STACK
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OUR JOURNEY SO FAR
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RISC-V MACHINE
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RISC-V MACHINE
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THE MAP (THE CODE)
#include <stdio.h>
int main() {

printf("Hello, World!");
return 0;

}

0000000000001149 <main>:
  1149: f3 0f 1e fa      endbr64
  114d: 55          push  %rbp
  114e: 48 89 e5       mov   %rsp,%rbp
  1151: 48 8d 05 ac 0e 00 00 

lea   0xeac(%rip),%rax     # 2004 
<_IO_stdin_used+0x4>
  1158: 48 89 c7       mov   %rax,%rdi
  115b: e8 f0 fe ff ff    call  1050 <puts@plt>
  1160: b8 00 00 00 00    mov   $0x0,%eax
  1165: 5d          pop   %rbp
  1166: c3          ret  We will not cover this conversion in 

detail. CS 4620 - Compilers
 is a class dedicated to building and 
understanding the program designed 
to do this conversion. 

We’ll focus on understanding the 
output of the program and how this 
output gets executed on a machine
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THE ISA ALSO INCLUDES FLOATING LAYOUT 
SUPPORTED AND REGISTER AND THEIR 

DESCRIPTION

https://www.elsevier.com/__data/assets/pdf_file/0011/
297533/RISC-V-Reference-Data.pdf 

Let’s look at the section that describes floating point
And instruction encodings.  Focus many on the 
second page

https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf
https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf
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