CS0 2130

Overview

Daniel G. Graham PhD

i UNWERSITY | pNIGINEERING

Contents

Discuss the ideas from our
last 14 lectures.

Only 25 lectures left after
this one. (Yeah, it goes by
fast)

Topics, and tools for
continuing your hardware
journey

Now we move to software
x86 assembly and C

THE MAP (THE IVIACHINE)

@zﬂ} = v [

'S
PCSrc

Control|
Unit ResultSrc
MemWrite

EY

r— funct?s | ALUControla,
14:12

— funct3 (ALUSrc

20 Jop

ImmSre, o
Zero [RegWrite
N

cLK CLK

PCNext °15] A1 E RD1
PC A RD Instr

Instruction
Memory

S|LALUResult |ReadData

Memory
1 WD

3
wD3 Regjster I WriteData
File

PCTarget
+
il
317
PCPlus4

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

i UNYERSTY | ENGINEERING

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

BOTTOM-UP APPROACH

fiil URNVERSITY | pNGINEERING

THIS WERE WE’LL START OUR JOURNEY

filli UNRERSITY | ENGINEERING

WHAT ARE LOGIC GATES

« Logic gates are circuits that perform logic AND
functions
« such as AND, OR, (NOT), etc A Y
* Logic gates have different symbols and their B
behavior is normally described using a truth table.
. Y=AB
A BlY
0 0 0
0 1 0
1 0 0
1 1 1

filli UNRERSITY | ENGINEERING

SINGLE INPUT VS TWO INPUT GATES
NOT OR

R~ o ol
R o~ ol

filli UNRERSITY | ENGINEERING

MORE LOGIC GATES

XOR NAND NOR XNOR
A A A A
50 Y Bl pY B v 5 o
Y=A®B Y = AB Y=A+B Y=A®B
A BI|Y A B|Y A B|Y A B|Y
0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

filli UNRERSITY | ENGINEERING

PULL UP PULL DOWN NETWORKS

4 L I
NOT
V_D_D pull-up
A ~>C% Y | network
P1 Inputs | - J
Y = Z A e y +
N —L
A ¥
pull-down
1 0 GND network

N
RN

output

ENGINEERING

NOT GATE

fil ONERSTY | ENGINEERING

]
B N2

v

NAND gates are Turning complete you can
build all other gates from them

e e B

filli UNRERSITY | ENGINEERING

| « “ # Untitled
DESIGN DOCUMENT VALIDATE AUTOMATE LIBRARY
y 4 N A -
0ci:g DX 179
SWITCH ~ VIEW ™ EDIT~ PLACE™ CONNECT ™
DESIGN MAN DISPLAY LA.. ERR PLACE COMPON, [91 Nets .
All Libraries v B
led X =
Library Variant
@ Dis
TQFN16
0402 v
fb CHIP-. @ LED _0402 v
fb CHIP-. @ LED _0402 v
fb CHIP-. @ LED _0402 v
fb CHIP-. @ LED _1209 -
fb CHIP-. @ LED 1209 N
[CHIP-. @ LED _1209 v
[CHIP-. @ LED _1209 v
[cPco9. @ IC E v
f D*041. @ Dis
fb D*?SU. @ Dis. 5651 v
f5 DAO3-. @ Dis
B E-625. @ IC POWER_S0-36
B HV993. @ IC LG
f HVe96. @ IC LG/TG
fb LEDC. @ Opt. RED-3216 v
f LEDC. @ Tut RED-2012 v
fb LED_R. @ Opt. YELLOW v
f PD*S4. @ Dis
B TIcsoL. @ IC TSSOP
f ws2812 @ LED
f ws28l. @ LED
30 Components
Details Attributes
CHIP-FLAT-B_0402 i m
-
Net: N$1, Class: 0 default |
SHEETS

A CIER

O BYEY [/ 7=

SIMULATE ~

1 Untitled*

REWORK ™

K

MODIFY ¥ SHORTCUTS »

=

(%2 Untitled*

3

SELECT ¥

+ D © £ @ oG

Auto-generate |~

Loop

Net Class

B

0 default v

IVERSITY

IRGINIA

ECTOR

INSP

Done

CTION FILTER

SELE

ENGINEERING

DESIGN

asad)

SWITCH™

Filter

¢ Untitled

MANUFACTURING AUT

[.J: R\zﬂ @

ANNOTATE ¥ OUTPUTS ¥ DRAW ™

GN MANAGER . 1Top

Assembly Variant: Default Variant

View: | Components

Component Sets

, Search

3 of 3 shown (1 selected)

Component Set

omponent:
p Side Component:

Components
Search
lami A Device
BT1 (796136-1)

0402 (CHIP-FLAT-B)
PDIP (74HC00)
(DSO1E)
(DSO1E)

Items
, Search

Type

14

5 of 5 shown (0 selected)

Footprint
796136-1
LEDC1005X25N_FLAT-B LED_BL|
DIP762W53P254L1969H508Q14B 74HCO(Q
Ds-01 DSO1E
Ds-01 DSO1E

0 of 0 shown (0 selected)

Signal Layer

SIMULATION

Untitled

LIBRARY

Bx

ATTRIBUTES ¥

50 mil (-513 1009)

&5 Untitled*

LED_BLUE

796336-1

2= [INIVERSITY
[TRGINIA

ENGINEERING

3D R e
PCB (

MODIFY ¥ INSPECT ~ CONFIGURE ™ SELECT ¥

<« BROWSER e
4 o[3 O]
Document Settings

Named Views
Origin

Joints

Sketches
Board:1
1-copper:1
16-copper:1
1-soldermask:1

16-soldermask:1

AV VAR VARV ARV A VA v A Vi v v

Packages:1

il UNVERSITY | ENGINEERING

Solve Level Levels

‘ Level Help ‘
Nand

Your task is to connect inputs to
output through wires and relays such
that when both a and b inputs are 1,
the output is 0.

1 represents electrical current, 0
represents no current.

The V input carries constant current,
i.e. always 1.

The exact specification:

Input Output

a b

0 0 1
0 1 1
1 0 1
171 0

Toolbox

relay (default off)

Output:

Step 1: Dra
componenty
toolbox to ti
area.

Input:

Nand X

Welcome to The Nand Game!

You are going to build a computer starting from basic
components.

The game consists of a series of levels. In each level,
you are tasked with building a component that behaves
according to a specification. This component can then
be used as a building block in the next level.

The game does not require any previous knowledge
about computer architecture or software, and does not
require math skills beyond addition and subtraction. (It
does require some patience—some of the tasks might
take a while to solve!)

Your first task is to build a nand component.

On the left of the diagram is the exact specification of
the task. Click "Level Help" for further information
which might be helpful.

THE NAND

GAME

VERTY | ENGINEERING

WHAT IS THE OUTPUT OF
THIS CIRCUIT?

I

HHOOHOOOO

el B el el el Nl Neo Nl Na»)
b—tb—tOOb—tb—toow
i =l = el = =l ()

filli UNRERSITY | ENGINEERING

THE MAP (THE MACHINE)

m@..:.v v

'S
PCSrc

Control|
Unit |ResultSre

MemWrite
3
funct7s | ALUControlyo
1812
[—funct3 |ALUSIC
50
150 1op

ImmSre, o
Zero [RegWrite
N

cLK CLK

PCNext == A1 B3 Ro1
PC A RD Instr

Instruction
Memory

S|LALUResult |ReadData
21 A2 RD2

Memory
WD

WriteData

o | ||
wD3 Reg]ster
File

PCTarget
+
il
317
PCPlus4

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

i UNYERSTY | ENGINEERING

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

1 BIT MUX Y =D,S + D,S

S —
D, N
D 0 /
0 /
Y /\I
D, —1 | /\
S D1 D0 Y S | Y S ’ N
0 0 o] o 0 [D, D,) L
0 0 1| 1 1 | D, — , ,
0 1 o] o
0 1 1 1 _/
1 0 0| o
1 0 11 0 Y
1 1 ol 1
1 1 1| 1

fiil URNVERSITY | pNGINEERING

2 BIT MUX

filli UNRERSITY | ENGINEERING

JUUC

2 BIT MUX

Dy —
D, —
D, —

D; —

filli UNRERSITY | ENGINEERING

THE IDEA

ADDER A +B

filli UNRERSITY | ENGINEERING

THE CHALLENGE

Our gates only support 0 and 1s.

How can we represent other decimal numbers?
How can we present negative numbers?

What about fractions ©?

filli UNRERSITY | ENGINEERING

BINARY

_\ uwnjoosg
= UWN|OD S,{
O uwnpoo sz

uwn|o9 s,|

—

=1 x2B8+1x22+0x2"+1x20=13_

one one no one
eight four two one

2

filli UNRERSITY | ENGINEERING

4-BIT ADDER

ADDER A+B

Carry

filli UNRERSITY | ENGINEERING

Signed Bits Unsigned . .
o o Sign Bit
1 0oo01 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
-0 1000 8
-1 1001 9
-2 1010 10
-3 1011 11
-4 1100 12
-5 1101 13
-6 1110 14
-7 1111 15

filli UNRERSITY | ENGINEERING

Bits

0000

Unsigned

0001

0

0010

0011

0100

0101

0110

0111

1000

1001

1010

O/ o|d|loan|O]|&]|WIN]|PRFL

1011

[
o

1100

l—\
'—I

1101

[
N

1110

=
w

| ||| _IW|IDN|RL]| O

1111

=
('8

=
(6]

Bias

Floor((2"-1)/2) =7

filli UNRERSITY | ENGINEERING

Signed

Bits

0000

Unsigned

0001

0010

0011

0100

0101

0110

NJjiojlolsa]lWIN|R] O

0111

1000

1001

1010

W/ o|d|loanjU]|d|lW|IN|RPL|O

1011

[
o

1100

l—\
'—I

1101

[
N

1110

=
w

1111

=
('8

=
(6]

Two’s
Complement

filli UNRERSITY | ENGINEERING

HEXADECIMAL

0000

0001 Convert 00101110 to hexadecimal Answer: 2E
0010

0011 Group them
0100 0010=2
oot 1110=E
0 Final Ox2E

0111

1000
1001 e Some programming languages uses prefixes

Ol |IN|J]ojUun]| bdP|lWIN]F—]|O

=
o

1010 e Hex: Ox

1011 e 0x23AB=23AB
1100

[uny
[y

=
N

e Binary:0b
e (Obl101=1101,

=
w

1101

=
H

1110

nm|lo|lo|lw||lo|lo|v]|lo|lu|r]|lw]|nvw] -]|o

[ERN
%]

1111

filli UNRERSITY | ENGINEERING

BITWISE OR |

1100,
| 0110,

1110,

N

<

X
y
Z
P

+ X O R

—~~
N —
N

S
=- 110
>

filli UNRERSITY | ENGINEERING

BITWISE OR XOR A

1100, oyt
A 0110, L
print

1010,

filli UNRERSITY | ENGINEERING

FLIPPING BITS

File the second bitofx.1=>0and0=>1

1100,
A 0010,

1 1 102 What if the nth bit was 1 instead?

filli UNRERSITY | ENGINEERING

MASKING (EXTRACTING BITS)

The Idea of masking with can extra a certain section of
bits by anding.

X = 220

11011100, |

X = X & mask

& 00001111, print (x)
OOOO Lower 4 bits extracted

filli UNRERSITY | ENGINEERING

PARITY o010 Partty bit

D o +— starting
0 value
0010 parity bitis 1 0010 \
0110 parity bit is 0 @ o Result of xor
1 \
. 0010 Result
parity =0 1 shifted one
repeat 32 times: 1
parity "= (x&1)
x>>=1 ® (1)010
1 Final Parity
bit

Same as just xoring eachbit0 0P 1 0=0

filli UNRERSITY | ENGINEERING

PARALLEL EVALUATION

Observe that xor is both transitive and associative; thus we can re-write

X0Px1Px2Px3Px4Px5Px6Px7

using transitivity as

XOPx4Px1Px5Px2Ppx6Px3Px7

and using associativity as

(XOPDx4)D(x1EDx5)D (x2Dx6)D(x3Px7)

and then compute the contents of all the parentheses at once via
X N (x>>4).

filli UNRERSITY | ENGINEERING

PARALLEL EVALUATION

X0Px1Px2Px3Px4Px5Px6Px7

using transitivity as

XOPx4Px1Px5Px2Ppx6Px3Px7

and using associativity as

(XOPDx4)D(x1EDx5)D (x2Dx6)D(x3Px7)

and then compute all at once via
X N (x>>4).

X A= (x>>16)

X M= (x>>8)

X M= (x>>4)

X M= (x>>2)

X A= (x>>1)
parity = (x & 1)

filli UNRERSITY | ENGINEERING

ENDIANNESS

Little ENDIAN
OXOOOOOOSIC (9210)

Less significant at Lowest
address

filli UNRERSITY | ENGINEERING

ENDIANNESS

Big ENDIAN
0x5C000000 (15435038724)

Most significant Byte at
lowest address

filli UNRERSITY | ENGINEERING

ENDIANNESS

Little-endian Big-endian
32-bit integer

O0OAOBOCOD

32-bit integer

Memory 0AOBOCOD

—> 0C| at+l |0B| =—
> (OB| at2 |0C| =
> 0A at3 |0D| =

filli UNRERSITY | ENGINEERING

FLOATING POINT

>> 0.1 + 0.1 + 0.1 == 0.3

False

>>> (0.1 + 0.1 + 0.1) == 0.3
* How can we represent decimal values in binary? False

* Why do errors like these occur? >> X = 0.1 + 0.1 + 0.1
>>> X

0.30000000000000004

>>> 0.3 + 0.3 + 0.3

Floating point * >>> 0.8999999999999999
rounding error

filli UNRERSITY | ENGINEERING

IEEE 754

sign Exponent Mantissa

number = Sign(1+ I\/Iantissa) X 2exponent—bias

On 32 bit machines bias in normal 127 (Yes this is
bias representation we talked about earlier)

filli UNRERSITY | ENGINEERING

BINARY STRING

0.1101 = 1.101 x 27

Keep going until you get to your first 1.

0.01101 = 1.101 x 22

0.001101 = 1.101 x 23

filli UNRERSITY | ENGINEERING

CONVERSION EXAMPLE

Let’s convert 0.8125 to floating-point representation

2t 22 23 24

0.8125x2=1.6250 1
0.6250 x 2=1.2500 1
0.2500 x 2=0.5000 0
0.5000 x 2=1.0000 1 -

<

1x1/2+1x1/4+0x1/8+1x1/16=13/16

0.1101
=1.101 x 2-1

filli UNRERSITY | ENGINEERING

CONVERSION EXAMPLE PART 2

0.1101 =1./101|x 2"

Sign: 0
Mantissa: 101
Exponent: -1 + 127 = 126(d)
= 1111110(b)

001111110"1010000 00000000 00000000

filli UNRERSITY | ENGINEERING

CONVERSION PART 3

0.1x2=0.2 0 Just like the 1/3 0.1 keeps repeating
0.2x2=04 0
04x2=08 0 001111011 1001100 11001100 1100110
0.8x2 =1.6 14 123 Yo+ 1/24+1/25+1/28+ 1/2° +
0.6x2=1.2 1 1/212+ 1/213 + 1/216+ 1/217 +
0.1x2=0.2 0 1/220+ 1/221
...... repeats ... (-1)5 x (1 + m) x 2esporent -bias
0.0999999940395355224609375 = (-1)0x (1+ ~=2020L) 123127
. 2097152
No quite 0.1

filli UNRERSITY | ENGINEERING

GREAT NOW WE HAVE ALL WE NEED TO THINK
ABOUT DESIGNING OUR ADDER

filli UNRERSITY | ENGINEERING

4-BIT ADDER

ADDER A+B

Carry

Great now let’s build it with gates.

filli UNRERSITY | ENGINEERING

ADDING

Let start by building a half adder

something that just adds two bits.

1111 < Carries

0111 Let’s build a truth table.
+1011
0010 A B A+B C.out
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

We can implement

A + B with an XOR gate
And the C.out (Carry out)
With an AND gate

A B

fiil URNVERSITY | pNGINEERING

HALF ADDER DEMO

https://tinyurl.com/ygpea8v4

http://www.falstad.com/circuit/circuitjs.html?ctz=
CQAgjCAMBOI3BWcOFWCWCYOHYEA4cEMEIURT)y
BTAWjDACgwEOQMs21KBmMANjO6VKGKOSZI2rMGl
Z8B01sNEIGAGXAZ5vSnkphtbUQDMAhgBsAzIXJQ
1GgZJC62HEZVOXrSSAwDuU9SlykDRx9-
fWEOcIDQS8AMWTUDov1il1kcQ5PitPQBOESiYsDyU
8GLiXIswsoQK9JrKOvzgylIMfAFkQOXAZEDRSbrS2F
AYOrgxKPtquQwxhoA

filli UNRERSITY | ENGINEERING

https://tinyurl.com/ygpea8v4

ADDING Half

Adder
A B
We can implement
A + B with an XOR gate Cou
1111 € Carries And the C.out (Carry out) S
0111 With an AND gate
+1011 A B |Cwu S
0010 0 0 0 0
A B 0 1 0o 1
1 0 0 1
1 1 1 0

filli UNRERSITY | ENGINEERING

Adder Adder
A B A B
S S 111|1| <€ Carries
011
A B Cout S Cm A B Cout S
0 0] 0 o 0 0 0| 0 o0 +1014
o 1| 0 1 o 0o 1| 0 1 00[10
1 o o 1 0 1 0| 0o 1 -
1 1 1 0 0 1 1 1 0
1 0 o] 0 1
S =A®B 1 0 1 1 0
Cot = AB 1 1 0 1 0
11 1} 1 1 Note on special case 3 input xor.
S “A®B®C Draw the three gates. Really
Cout = AB + AC;, + BC,, Three xors stacked.

filli UNRERSITY | ENGINEERING

Adder
A B
C°”‘m Cin 111/1| <€ Carries
A —¢
S 01|11 S
+1011)1 Bt L/
Cin A B Cout S 111110 Cin
0 0 0 0 0 |
0 0 1 0o 1
0 1 0 0o 1
0 1 1 1 0
1 0 0 0 1 Cout
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
S =A®B@®C, C.out has been rewritten to reduce the number of

Cout = AB + ACin + BCi” gateS needed

filli UNRERSITY | ENGINEERING

RIPPLE CARRY ADDER

Next let’s build a full adder

filli UNRERSITY | ENGINEERING

Xp

X; o—

ch

X, o—

A

Y, ©

N

X; o—

Y3°

v,

RIPPLE CARRY ADDER

1111
0111
+1011
0010

< Carries

filli UNRERSITY | ENGINEERING

THE MAP (THE MACHINE)

E’.@

CLK

PCNext

PC

A RD

Instruction
Memory

Instr

PCSrc

ResultSrc
MemWrite

EY

r— funct?s | ALUControla,

14:12 aLose]

— funct3 (ALUSrc

60
12 {op

Control|
Unit

ImmSre, o
Zero |RegWrite
N

CI_K

sl a7 WES oy

ReadData

2] A2 RD2

Memory

7 1 A3 . I)
1 1wps Reginlseter WriteData WD

PCPlus4

PCTarget
+
317

Result

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

i UNYERSTY | ENGINEERING

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

CLOCKS EDGES

Rising Edge

Single Cycle

filli UNRERSITY | ENGINEERING

CLOCKS EDGES

We will build a
single cycle
machine it will
complete all the
Single Cycle computation in
; : a single cycle

Falling Edge.

filli UNRERSITY | ENGINEERING

USING RING OSCILLATORS TO GENERATE CLOCKS

A clock is something that produces a periodic signal
. P P s Let’s walk through

an example
Q assume that Q
starts of as 0

Frequency = 1/(2*t*n)
Where t is time delay of an inverter and n is
number of inverters

filli UNRERSITY | ENGINEERING

STORING SINGLE

Goal

1. Understand the behavior of a positive edge-
triggered D flip-flop.

. How do we store a bit
* What happens when the clock changes

* What does it mean to be a positive
edge triggered flip flop

. What is Qandﬁ

Clock—

fiil URNVERSITY | pNGINEERING

BUILT SIMULATOR VERSION

t=4.185s
time step = 5 i

Use this link to experiment with the flipflop
during lecture. Try different things and see how it
works

https://tinyurl.com/2dhk5kvg

http://www.falstad.com/circuit/circuitjs.html?ctz=
CQAgjCAMBOI3BWcMBMcUHYMGZIA4UA2ATmIx
AUgoqoQFMBaMMAKDASUPxABZsUQGPD1780oFF
gHcQXPKIE88VPgMhSZ3HoRGLI2qCwAyvIfN6KzVC
ADMAhgBsAznWpgASib064vfRAFgPijQSMFIVDAIL
ACygpA6YkrKYIRhLAD21PrkkKSuOBBWIADYyAK4AL
gAOFRngMil5eeGw8GSECIQo4SABINggAIYAdtXIt
QLZvLnE+fC5G02d3QIC-QDGYulrANYsQA

filli UNRERSITY | ENGINEERING

https://tinyurl.com/2dhk5kvg

THE FLIP FLOP HOLD HOLDS THE VALUE FOR A
CLOCK CYCLE

Clock—’> a — 0

clock \

filli UNRERSITY | ENGINEERING

BUILDING A REGISTER FROM FLIP FLOPS

0
0

1-D Q D Q D Q

CLHP cu<—l> CLK—’>

Removed Q (bar) for reability

filli UNRERSITY | ENGINEERING

REGISTER SYMBOLS

73L- Data in

Data out——

filli UNRERSITY | ENGINEERING

3-BIT COUNTER

Let’s put it all together and build a 3-bit counter
Circuit that counts from

000,

001,

010,

011,

100,

101,

110,

111

ck —>

Data in

Data out

2N IVERSITY

BillE 7\ /TRGINTIA

ENGINEERING

THE MAP (THE IVIACHINE)

@zﬂ} = v [

'S
PCSrc

Control|
Unit ResultSrc
MemWrite

EY

r— funct?s | ALUControla,
14:12

— funct3 (ALUSrc

20 Jop

ImmSre, o
Zero [RegWrite
N

cLK CLK

PCNext °15] A1 E RD1
PC A RD Instr

Instruction
Memory

S|LALUResult |ReadData

Memory
1 WD

3
wD3 Regjster I WriteData
File

PCTarget
+
il
317
PCPlus4

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

i UNYERSTY | ENGINEERING

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

PROGRAM COUNTER

CL!K * To track where we are in a program
PCNext 1 2 | PC D, jo D, jl D, jn
e | l l
gk gk gk
+<S
| CLK
N n-bit Register
n-bit PC

filli UNRERSITY | ENGINEERING

MEMORY COMPONENTS OF A PROCESSOR

CLK

PCNext P
32 3

A RD

Instruction
Memory

CLK |
|

WE3
—-— A1l RD1 jri=
5 32
- A2 RD2 ==
75L‘ A3 Redist

egister
’37 wD3 File

CLK

WE

Data
Memory

WD

32

filli UNRERSITY | ENGINEERING

REGISTER FILE

CLK
* Temporary storage location N WE3
* Stores immediately needed variables AT RD1 32
e External interface
 Addresses: Al, A2, A3 A2 RD2 32
« Data: RD1, RD2, WD3 AS o gister
* Enable: WE3 WD3

File

 Clock: CLK

filli UNRERSITY | ENGINEERING

READ FROM A REGISTER FILE

n n Dout

,_5 Reg 0 7 D ?
n n out
Di sl D
o ~__Reel o |1 | 2 b—-ron
D n out
’—._5 Reg 2 ’ 5 M
n n out
Din 7 ._5 Reg 3 1
2
Al

filli UNRERSITY | ENGINEERING

DEMULTIPLEXER (DEMUX)

Example: 1:2 Demux

v * Connects one input to one of the N outputs
12 ° e Select input is log,N bits — control input
D DEMUX
Yl S

filli UNRERSITY | ENGINEERING

WRITE TO A REGISTER FILE

WE —

DOUt
7 ':B Reg 0
D_' D DOUt
Db feer [
DEMUX D-:B Reg 2
« DOUt
D_:B Reg 3
\ZJ\ CLK
n
A3

filli UNRERSITY | ENGINEERING

INSTRUCTION MEMORY

e Stores the program
- A RD pr=—

32 32
Instruction
» Read data (RD) for a given address (A) Memory

For this class, we will assume we cannot write to Instruction Memory.

filli UNRERSITY | ENGINEERING

DATA MEMORY

CLK
L
* Contains data needed by the program WE
+= A RD |-~
» Read data (RD) from a given address (A) Data
> Write data (WD) to a given address (A) Memory
-+ WD

filli UNRERSITY | ENGINEERING

EXERCISE

Answer:

000000C0 50 01 02 03 04 05 08 @D 15 22 37 46 FF AA C2 34
000000D0 3D 18 55 6D C2 2F F1 20 11 31 42 73 B5 28 DD 05
000000EQ E2 27 C9 BO 79 29 A2 CB 6D 38 A5 DD 82 5F E1 40
000000F0 21 72 83 E3 12 34 56 78 A3 87 39 D@ 09 DF E4 B5

filli UNRERSITY | ENGINEERING

Levels in Speed

MEMORY HIERARCHY and Capacity of

the Memory

Higher levels larger
and slower
memory

>

Increase in cost per bit
Increase in Capacity & Access Time

<€

CPU
Registers

Cache Memory
(SRAMS)

Level 2

Level 3

Level 4

Level 4

Memory Hierarchy Design
Figure from: https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

filli UNRERSITY | ENGINEERING

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

ARITHMETIC LOGIC UNIT

A B

32 Y

| 32

Adder

T~

Divider

Multiplier

N:1

MUX

32

/

Function Code

filli UNRERSITY | ENGINEERING

ALU SYMBOL AND INPUTS

Flags example Carry Bit

> Result

Function Code

filli UNRERSITY | ENGINEERING

TOY ISA AND PROCESS
VERSION 0.1
WE’LL MAKE IT BETTER DON’T WORRY

filli UNRERSITY | ENGINEERING

TINY PROGRAM TO ASSEMBLY

Looks like we need two types on

m = 4 instructions

X 2

b -1 1. Aninstruction to load values

Yy = m*xX*Db 2. Aninstruction to computation
(multiply)

filli UNRERSITY | ENGINEERING

LET’S DECIDE HOW WE ARE GOING TO LAYOUT

3-bits
Unused
1. Aninstruction to load values into Registers 4'
m=3 RO =3 xxx | R
X=2 > R1 = I
b =-1 R2 = I
8 bits

We just make
these zeros
XXX =000

filli UNRERSITY | ENGINEERING

NOW LET’S TRANSLATE OUT PROGRAM TO
ONES AND ZERO

1. Aninstruction to load values into Registers XXX | R
m=4 RO = 000 | 00 0x03
X =2 > R1 = j‘> 000 [01 4‘> 0X0A
b=-1 R? = 000 | 10 Ox17

filli UNRERSITY | ENGINEERING

icode b | meaning

o[- FULL ISA

1 rA += rB
2 rA &= rB
3 rA. = read from memory at address rB Let look at each
4 write rA to memory at address rB of these
5 0O | rA = ~rA . :
instructions
1| rA = -rA
2 | YA = IrA
3 | rA = pc
6 0 | rA =read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB

. q IVERSITY
else increment pc as normal i 7virena | ENGINEERING

GREAT WE HAVE OUR FIRST INSTRUCTION

XXX | RA

RA = Value

filli UNRERSITY | ENGINEERING

AUTOMATICALLY FETCH A NEW INSTRUCTION

PCNext L

n-bit PC

EVERY CLOCK CYCLE
i RD Avf 0x03
0x03
Ox0A
Ox17
CLK ——

filli UNRERSITY | ENGINEERING

—40 1T 1] Vvalie

02
Ly register number
— {0 9] 9

57 i_iM not used/ Reservered
E I 0 oo [El[oal17]oo
04 [ooloolooloo

A 08 [00Joo|o0o|00 D
Oc [00]|00(00|00

En

filli UNRERSITY | ENGINEERING

\\m

CLK

\\m

\ 39y 19-8 4—

+<

8-bit PC

CLK =

0x03
Ox0A

Ox17

RD

0x03

1
000 | 00
8
S\ A1l WE RD1 |—
2\ M BN
A3
WD3
RO =3
Our program would have loaded R] =
values into the register file R =

filli UNRERSITY | ENGINEERING

OPCODE

Multiply Registers 1-bit
= * e Kk _
Y m*x*b > RO *= 0 ”
RO *=
0 --> Multiply
Finally, we need an opcode to distinguish our load 1--> S.ave Value
to register

instruction from our multiple

filli UNRERSITY | ENGINEERING

Let’s multiply value in Registers

y=m*x*b

RO *=

> RO *=

ENCODING

RA
0 00 0x20
j;> j‘> 0x40
0 00
Ox17

filli UNRERSITY | ENGINEERING

BUILDING MACHINE TO COMPUTE THIS

00
——o A1
A2
A3
WD3

WE rp1
RD2

RO=6
R1 =

R2 =

Remember
writing
just a
occurs at
the edge

filli UNRERSITY | ENGINEERING

NOTE WE ALSO NEED TO UPDATE THE
ENCODING OF OUR LOADS

1. Aninstruction to load values into Registers 1 RA
m=4 RO = 1 00 0x83
‘=2 > R1 = :> 1] o0 Jor —:> 0x8A
b=-1 R2 = 1 10 0x97

filli UNRERSITY | ENGINEERING

1. Aninstruction to load values into Registers

m=4 RO = 1 00 0x83

X=2 —> R1 = $ 1 01 ::> Ox8A

0x97
b = -1 R2 = 1] o J10

Let’s multiply value in Registers 0 RA I
RO *=
0 00 0x20
y=m*x*b j‘> ~ > j‘> Ox40
RO *= 0 0 X

filli UNRERSITY | ENGINEEKING

INSTEAD GOING INSTRUCTION BY INSTRUCTION
LET’S DESIGN THE ISA AND THE MACHINE

filli UNRERSITY | ENGINEERING

TOY INSTRUCTION SET ARCHITECTURE (ISA)

The ISA defines:

1. Instructions and their layout
2. Data types

3. Registers we’ll have

7 6 5 4 3 2 10 7 6 5 4 3 2 10
R | icode a b immediate
byte at pc byteatpc + 1

How instructions are laid out in our ISA

filli UNRERSITY | ENGINEERING

ENCODING OUR FIRST INSTRUCTION

Try to encode the following instruction RO = R1

7 6 5 43 210 /76 5 43 2 10
R icode a b immediate
byte at pc byte at pc + 1
folelo[-X0M RA = RB Not used

This
instruction

7 6 5 4 3 2 10 is not using

ol ooo 00 | 01 a value

filli UNRERSITY | ENGINEERING

icode o] Behavior

0 rA=rB RO = 8
1 rA+=rB Rl = -1
RO += R1
2 rA&=rB
6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

7 6 5 4 3 2 1 O 7 6 5 4 3 2 1 0

R icode a b immediate

0 110 00 00 00001000

filli UNRERSITY | ENGINEERING

Notice that we have to
increment the Program
Counter by two for
these instructions.
Because they are two
bytes long while the
other instructions are
only 1 byte

RO = 8 {

Rl = -1

RO += R1

filli UNRERSITY | ENGINEERING

THE FLOW

x = 8 RO = 8

Y -1 Rl = -1

Z = X + Yy RO += R1
0x60 0x08 0x64 OxFF Ox11

filli UNRERSITY | ENGINEERING

Toy ISA Simulator

Choose File 'no file selected

ir = 00
60 0864 FF|(11 000000 00000000/00000000 pc = 00
0 = 00
1 = 00
2 = 00
5 = 00
Execute one instruction
Run ‘With 15 seconds between instructions

Reset

i UNWVERSITY | ENGINEERING

icode b | meaning

; rA = T8 FULL ISA

1 rA += rB

2 rA &= rB

3 rA. = read from memory at address rB we'll give the

4 write rA to memory at address rB full description

> O A=A of ISA at the
1| rA = -rA _
> | rA = 1rA begin of every |
3 | rA = pc exam. In fact this

6 0 | rA-=readfrom memoryatpc + 1 a picture of what
1 | rA+=read from memory at pc + 1 we will give you.
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB

. q IVERSITY
else increment pc as normal i 7virena | ENGINEERING

READ FROM MEMORY ADDRESS STORED IN RB

Registers
-ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ

RO| X 64 23 31
R1| X 10
R2| X 20 FF

30
R3| X

What are the values of RO and R1. Once program completes?

PC| 00

fil ONERSTY | ENGINEERING

REGISTER SPILLING

Because we have a limited number of registers, we can’t store all variables in registers,
so we must store some in memory and read them into a register when we need them.

Here is the strategy

1. Read the register value to a predetermined location in memory.

Use the register
Write the register value back to memory, so that it can be used to store something

else
Architecture 8 bit 32 bit 64 bit
ARM X 15 31
Intel x86 X 8 16
Toy ISA 4 X X

il UNIVERSITY | pNGINEERING

LET’S CALCULATE WHERE TO JUMP TO

Memory Address Size of Instruction
0x00 RO = M[0x20] 2 Bytes
0x02 R1 = 0x07 2 Bytes
0x04 If RO <= 0 set PC= RI 1 Byte
0x05 RO#= 1 2 Bytes
0x07 RO &= 2 2 Bytes

So what address do we want R1 to be?

filli UNRERSITY | ENGINEERING

WRITE A LOOP

First, rewrite as a do-while loop. (This due to limitation in Toy ISA) reasons will be clear

later.
X = 2
X =2 i=0
for (1 = 0; 1 < 5; 1i+4+4+)/{ do {
} i+
}while (1<5)

filli UNRERSITY | ENGINEERING

WRITE A LOOP

B RO = 2
X = 2

. Rl =0
1 =0 R2 = PC
do { RO += 1
x+=1 R1 += 1
i_|__|_ R3=Rl
R3+= -5

}while (1<5) .
if R3 <=0 then PC = R2

/ But wait is that correct? Translating the condition can be tricky T

filli UNRERSITY | ENGINEERING

WRITE A LOOP

% = 2 RO = 2 0x60 02
. R1 =0 0x64 0x00
1 =0 R2 = PC 0X5B
do { RO += 1 0x61 0x01
x+=1 Rl += 1 0x65 0x01
144 R3 = R1 Ox0D
R3+= -4 0x6D OxFC

Jwhile (i<5) .
if R3 <=0 then PC = R2 Ox7E

-3,-2,-1,0, 1 (five times)

filli UNRERSITY | ENGINEERING

SOME PERPECTIVE (RISC-V)

The RISC-V Instruction Set Manual
Volume I: User-Level ISA
Document Version 2.2

Editors: Andrew Waterman!, Krste Asanovié!+?

1SiFive Inc.,
2CS Division, EECS Department, University of California, Berkeley
andrew@sifive.com, krste@berkeley.edu

May 7, 2017

Available at: https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

filli UNRERSITY | ENGINEERING

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

RISC VS CISC

RISC-V ADD X86 Add

https://msyksphinz-self.github.io/riscv- https://www.felixcloutier.com/x86/add
isadoc/html/rvi.html#addi

Detailed Data Sheet: https://www.elsevier.com/ data/assets/pdf file/0011/297533/RISC-V-Reference-Data.pdf

fiil URNVERSITY | pNGINEERING

https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://www.felixcloutier.com/x86/add
https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

NOW THAT WE HAVE OUR ISA LET’S DESIGN THE
MACHINE

filli UNRERSITY | ENGINEERING

INSTRUCTION MEMORY AND INSTRUCTION
REGISTER

I icode | RA I immediate
N I = Instruction register (IR)
N Our diagram is going to have several
CLK comments so | will not draw the IR

Note: input and output widths on the
Instruction memory. The memory is byte-
addressable but reads 2 bytes at a time

filli UNRERSITY | ENGINEERING

1 BYTE AND 2 BYTE INSTRUCTIONS

CLK
g We'll add a mux that will select
' Ha ok passing one to adder or two.
/ . .
The mux will be controlled with a
o —1 CLK —L control line Cy. But what
N 2 component provides the control
8-bit signal? Answer the Controller
PC

Co

filli UNRERSITY | ENGINEERING

HARDWIRED CONTROL UNIT
icode (b [.. |G
6 X 1

— Icode Co

filli UNRERSITY | ENGINEERING

icode b | meaning
0] rA = rB
1 TA += TB Iicode RA
2 rA &= rB
CLK
G
g I
8 A 16 a1 WERD1
RD ¥ -1 A2 RD2 >
g
A3
+< _1 > WD3
N

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory atpc + 1

rA +=read from memoryatpc + 1

rA &= read from memory atpc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

W NP O WN -, O

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB
else increment pc as normal

j UNIVERSITY | pNGINEERING

3 rA = read from memory at address rB
4 write rA to memory at address rB

Looks like we have a conflict. Thoughts on how we
could fix this?

CLK Cs
C, |
8 I RD1 — WE
DI

8 16 a1 WERD1

- A RDP> S
A2 RD2 |

RD2 —— aqqr DO

A3

d
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

3 rA = read from memory at address rB

4 write rA to memory at address rB Let’s execute some sample
instructions

CLK C;
C, |
3 I RD1 === p WE
16 a1 WERD1
- A RDIS S
d Az RBZ RD2 = Addr DO |
A3
S 1 _> WD3 _E
§ - | .
2 S
8-bit
PC ¢, T
Cs

filli UNRERSITY | ENGINEERING

1 rA += rB
2 rA &= rB Let’s execute some sample
3 rA = read from memory at address rB instructions
4 write rA to memory at address rB
CLK C;
C |
8 I RD1 WE
16 a1 WERD1 o
A A RD[% 5
d Az RBZ RD2 = Adar DO |
A3
S 1 _> WD3 _E
N

= .
d
T

filli UNRERSITY | ENGINEERING

icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB

—_—

) O | rA = ~rA
1| rA = -rA
2 | TA = IrA
3 | rA = pc
6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memory atpc + 1
2 | rA &=read from memory atpc + 1
3 | rA=read from memory at the address stored atpc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2's-complement to 0

if rA <= Osetpc = rB

else increment pc as normal

UNIVERSITY
7VIRGINIA

ENGINEERING

5 0 rA = ~rA
1| rA = -rA Draw out the flow here
2 rA = IrA
3 | rA = pc
CLK C;
C, |
g I RD1 = VE
16 a1 WEgp1
- A RD[* .
d Az RBZ RD2 = Adar DO |
A3
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

5 0| rA = ~rA Changed it to just be
1| rA = -rA the label
2 rA = IrA
3 | rA = pc
CLK C;
g I o1 —p VF
s 16 a1 WEgp1
RDT™ A2 RD2 >

RD2 =1 Addr DO [7]

A3

e
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

1 _> _WD3
d

6 0 | rA=read from memoryatpc + 1 Walk through the flow of
1 | rA +=read from memory atpc + 1 an example instruction
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored at pc + 1 I icode | RA I
CLK C;
Immediate (|:1 I
8 RD] = WE
8 ‘16+ a1 WEgp1 4
>~ A RD[IS
A2 RD2 = | agqr DO |
A3

|

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memory atpc + 1 Again we just need a mux
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored atpc + 1
CLK C;
Immediate &t I
g 8 I RD1 = VE
8 16+ Al WE RD1
¥ A ROPY A2 RD2 > RD2
DO ™
A N - :D— Addr
K WD3 Ce
A P N =
N
d

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1 Just need a mux
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate &t I
g 8 I RD1 = VE
8 16+ Al WERDl
¥ A ROPY A2 RD2 > RD2
Addr PO [T
-~ A3 ::D_ ||v|:| ; r
K WD3 Ce
A P N =
N
d

filli UNRERSITY | ENGINEERING

7 Compare rA as 8-bit 2’s-complement to 0 !_et S do_a sample
if rA <= Osetpc = rB Instruction
else increment pc as normal I S I
CLK SF, ZF Cs
Immediate €1 I
g $ 8 I RD1 ——
8 A ‘16 Al WE RD1
’ O A2 RD2 > RD2 50 -
o s " — Addr
RD2 0 c
< WD3 6
f —1 — B
> o A Cs c
N 2
2
8-bit d -
PC ., H\ "
Cq

filli UNRERSITY | ENGINEERING

OUR SINGLE CYCLE TOY PROCESSOR

CLK SF, ZF Cs
Immediate (|:1 I
g g 8 RDL ——{p
16 a1 WERD1
RO A2 RD2 RD2 adgr DO
d A3 IM L r
RD2 +< _1 > WD3 0 Cs
_L CS C
N 2 2
8-bit d ”
PC C, T -
Cy
Memory
Fetch Execute

Decode

filli UNRERSITY | ENGINEERING

OUR SINGLE CYCLE TOY PROCESSOR

CLK SF G
Immediate (|:1 I
S ,8 8 RD1 == D WE
16 a1 WERD1
RD I
A2 RD2 RD2 Add DO
"
g A3 M L
RD2 0 C
+< _1 > WD3 6 t
_L CS C
N 2 2
8-bit —
PC ., T -

Write back stages

filli UNRERSITY | ENGINEERING

WHAT ABOUT DETAILS OF THE MAIN MEMORY

1. Howisitimplemented? &
2. How does it work underhood? |
RD1 DI WE
3. Don’t worry we'’ll answer this in CSO 2.
1. Itis actually a complex hierarchy RIDJ:D— Addr DO
including a controller, c.aches, and .
Hardware support for virtual memory —_

like TLBS (translation lookaside buffers)

2. ltdoesn’t always return a valuein a
single cycle so the controller might
have to insert nops in the pipeline etc.

filli UNRERSITY | ENGINEERING

Levels in Speed

MEMORY HIERARCHY and Capacity of

the Memory

Higher levels larger
and slower
memory

>

Increase in cost per bit
Increase in Capacity & Access Time

<€

CPU
Registers

Cache Memory
(SRAMS)

Level 2

Level 3

Level 4

Level 4

Memory Hierarchy Design
Figure from: https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

filli UNRERSITY | ENGINEERING

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

New 8-Core Intel® Core™ i7
Processor Extreme Edition

Intel® Core™ i7-5960X Processor Extreme Edition IVERSITY
Transistor count: 2.6 Billion » mremmia | ENGINEERING

Die size: 17.6mm x 20.2mm

* 20MB of cache is shared across all 8 cores

WHAT ABOUT FUNCTIONS

S

F(x,a)

Jump back to the main code

filli UNRERSITY | ENGINEERING

SAVE PC =
instruction after
the function call

SAVE PC =
instruction after
the function call

v

F(x,a)

rd
//
F(x,a) ///
s
b
Ve
B L
v d -
s -
e -
v ”’
F(Xla) ’a””
C

-
g

Jump back
to saved
value

UNIVERSITY
7VIRGINIA

ENGINEERING

DEFINING A NEW INSTRUCTION

Let’s create a new instruction that will both save the
location to return and jump to the beginning of the
function. We’ll name this our call instruction

Save pc+2 , set pc = M[pc+1]

Let’s also create an instruction that sets the PC back
to the saved. We’ll name this our return instruction or
ret for short

pc = Saved Value

A
call__—
_—
F(x,a)
ret
B

F(x,a)

VN
i U?/N‘}}/ERSITY

RGINIA

ENGINEERING

WHAT ABOUT FUNCTIONS

What about recursive
F(x,a) functions? Functions

that call themselves

F(x,a)

Now we need to keep track F(x1,al)
F(x,a) of both the location return
to (multiple function calls
and the register state of
function before the call)

F(x2,a2)

filli UNRERSITY | ENGINEERING

THE STACK OXFF

F(x,a)
OxFE Return address 1
We are going to a region of memory that will hold the OxED F(Xl'al)
stack of function states and their associated return Return address 2
addresses. F(x3,a3)
OxFC Return address 1

By convention keep adding
new things to the stack by
growing it to lower addresses

filli UNRERSITY | ENGINEERING

THE STACK

RSP OXEC OxFF
F(x,a)
OxFE Return address 1
F(x1,al1)
We also define a new register that holds the location OxFD Return address 2
of the TOP of the stack in memory. We’ll name this F(x3,a3)
register RSP OxFC Return address 1

filli UNRERSITY | ENGINEERING

PUSH AND POP INSTRUCTIONS

RSP OXFC OxFF

OxFE

OxFD

We’ll also create two instructions that will add and
remove values from the stack.

OxFC

The push instruction will decrement the RSP and to
the top of the stack

Example push(0x04)

F(x,a)
Return address 1

F(x1,al1)
Return address 2
F(x3,a3)
Return address 1

filli UNRERSITY | ENGINEERING

PUSH AND POP INSTRUCTIONS

OxFF
RSP OxFB
OxFE Fx,a)
X Return address 1
F(x1,al1)
OxFD Return address 2
We'll also create two instructions that will add and
remove values from the stack. F(x3,a3)
OxFC Return address 1
The push instruction will decrement the RSP and to
the top of the stack OxFB 0x04 ‘v

Example push(0x04)

filli UNRERSITY | ENGINEERING

PUSH AND POP INSTRUCTIONS

OxFF
RSP OxFB
F(x,a)
OxFE Return address 1
F(x1,al1)
OxFD Return address 2
We'll also create two instructions that will add and
remove values from the stack. F(x3,a3
OxFC (x3,a3)
Return address 1
While the pop instruction increments RSP and returns
the value at the top of the stack OxFB 0x04 |

Example x = pop()

filli UNRERSITY | ENGINEERING

PUSH AND POP INSTRUCTIONS

OxFF
RSP OxFC
OxFE
OxFD
We'll also create two instructions that will add and
remove values from the stack.
OxFC

While the pop instruction returns the value at the top
of the stack and then increments RSP

Example x = pop() returns 0x04

F(x,a)
Return address 1

F(x1,al1)
Return address 2
F(x3,a3)
Return address 1

filli UNRERSITY | ENGINEERING

WHAT ABOUT THE FUNCTION PARAMETERS

We need to define a calling convention. The rules that
we’ll follow when we call a function.

1.

For our simple processor functions are limited to
2 parameters.

The first parameter will be stored in R2
The second parameter will be stored in R3

The return value of the function will be stored in
RO

If the function uses any other registers save them
before modifying them and restore them before
returning.

input = OxFF
shiftAmount = 0x02
output = left_shift(input, shiftAmount)

e

R2 = OxFF
R3 = 0x02
call left_shift

RO //Contains result

filli UNRERSITY | ENGINEERING

THOUGHT EXPERIMENTS

Could you implement the left_shift function using our Hint: Left shifts by 1 is equivalent to multiplying
toy ISA? the number by 2.

output = left_shift(input, shiftArmount)

filli UNRERSITY | ENGINEERING

ISA EXTENDED BY SETTING RBIT TO 1

icode b operation
0
0 Decrement rsp and push the contents of rA to the stack
1 Pop the top value from the stack into rA and

increment rsp
2 Push pc+2 onto the stack, set pc = M[pc+1]

pc = pop the top value from the stack
If b is not 2, update the pc as normal.

filli UNRERSITY | ENGINEERING

COULD YOU ADD PUSH, POP, CALL AND RET?

CLK " 3
Immediate (|:1 I
S ,8 8 RD1 == D WE
16 a1 WERD1
RD I
A2 RD2 RD2 Add DO
"
g A3 M L
RD2 0 C
+< _1 > WD3 6 t
N 2 2
8-bit =
PC ., T -

Write back stages

filli UNRERSITY | ENGINEERING

THE MAP (THE IVIACHINE)

3‘3@”# 1

'S
PCSrc

Control|
Unit ResultSrc
MemWrite

EY

r— funct?s | ALUControla,
14:12

— funct3 (ALUSrc

20 Jop

ImmSre, o
Zero [RegWrite
N

cLK CLK

PCNext °15] A1 E RD1
PC A RD Instr

Instruction
Memory

S|LALUResult |ReadData

Memory
1 WD

3
wD3 Regjster I WriteData
File

PCTarget
+
m —
317
PCPlus4

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

i UNYERSTY | ENGINEERING

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

WHAT ABOUT FABRICATING THESE

1signal and gate : 5
2and_gate <= input_ 1 input_2;

lentity example_and is
port (
input_1 : in std logic;
input_ 2 : in std logic;
and _result : out std logic
)

7end example and;

You can express our design in a
programming language called VHDL.

Simulate your processor in model sim

And then send off the TSMC, UMC, or
Samsung to get fabricated.

O vl b WN

Don’t worry you’ll not have to write - -
VHDL in this course. But ECE does offer larchitecture rtl of example_and 15

courses. Maybe | will rework or 2 signal and gate : std logic;
simulation lab to give us a taste of this 3begin

language.
guag 4

and _gate <= input_1 and input_ 2;
5 and_result <= and gate;
144 6end rtl;

THE MAP (THE CODE)

1149: f3 of 1le fa endbr64
114d: 55 push Srbp
114e: 48 89 e5 mov %rsp,%rbp
1151: 48 8d 05 ac Qe 00 00
lea Oxeac(%rip),%rax # 2004
<_I0_stdin_used+0x4>
1158: 48 89 c7 mov %rax,%srdi
115b: e8 f@ fe ff ff call 1050 <puts@plt>
1160: b8 00 00 00 00 mov $0x0,%eax
1165: 5d pop %rbp
1166: c3 ret

PCPlus4

il RRERITY | ENGINEERING

0000000000001149 <main>:

#include <stdio.h> 1149: f3 Of le fa endbr64
. . 114d: 55 push S%rbp
nt mal.n() {,, iy . 114e: 48 89 e5 mov %rsp,%rbp
printf("Hello, World!"); 1151: 48 8d 05 ac Oe 00 00
return 0; lea Oxeac(%rip),%rax # 2004
<_IO0_stdin_used+0x4>
1158: 48 89 c7 mov %rax,%srdi
115b: e8 fo fe ff ff call 1050 <puts@plt>
1160: b8 00 00 00 00 mov $0x0,%eax
)))) 1165: 5d pop %rbp
We will not cover this conversion in 1166: c3 ret
detail. CS 4620 - Compilers
. . . . ’ 1
is a class dedicated to building and We'll focus on understanding the
understanding the program designed output of the program and how this
to do this conversion. output gets executed on a machine

fiil URNVERSITY | pNGINEERING

‘ ENGINEERING

& [INIVERSITY
’ffNVIRGINIA

147

THE STACK

The Stack is a region of memory

filli UNRERSITY | ENGINEERING

OUR JOURNEY SO FAR

filli UNRERSITY | ENGINEERING

filli UNRERSITY | ENGINEERING

RISC-V MACHINE

PCSrc
ResultSrc
MemWrite
funct7s [ALUControl,.o
—— funct3 |ALUSrc

op ImmSrc, o

Zero |RegWrite
-

)

Control
Unit

CLK CLK
CLK | |

19:45 WE3 SrcA [T~ Zero WE

0]PCNext|™]pPC Instr —] A1 RD1
2 RO ALUResult ‘ ReadData

In;:r:‘(‘:)tlon 2620 po RD2 'ﬁ SrcB Data
ry 17 ‘
—] A3 .] — WriteData Memory
WD3 Register WD

File

- . PCTarget

ImmExt

Extend

PCPlus4

Result

filli UNRERSITY | ENGINEERING

RISC-V MACHINE

CORE INSTRUCTION FORMATS

3 o) 2 L 2 3 2
PCSre 31 2T 126 i23: 24 20 19 15 14 12 11 7 6 0

C:)Jr;tirtol ResultSrc R funct?7 | rs2 rsl funct3 rd opcode
0 MemWrite I imm[11:0] rsl funct3 rd opcode

funct7 ” P - .
| e ALUControlzo S imm[11:5] rs2 rsl funct3 imm|[4:0] opcode
— funct3 |ALUSrc
- . ~ R = ~] ~1 H . o o
59 _{op ImmSrog SB imm|[12/10:5] rs2 rsl funct3 imm[4:1]11] | opcode

Zero |RegWrite U imm([31:12] rd opcode

r;/ uJ imm[20[10:1|11]19:12] rd opcode
CLK
CLK | \L wLn |
WE3 WE
0] PCNext|V]pc A RD pnstr 19151 A1 RD1 SrcA Zero
— | i H . O} ALUResult A Rp |ReadData ﬂ
nstruction 24:20 <
Memo — A2 RD2 0 |SrcB Data
ry 17 |
3 Regi . — WriteData Memory
wp3 Register WD
File
— PCTarget
ImmExt
ikl Extend
PCPlus4
Result
4

RIERSIIY | ENGINEERING

0000000000001149 <main>:

#include <stdio.h> 1149: f3 Of le fa endbr64
. . 114d: 55 push S%rbp
nt mal.n() {,, iy . 114e: 48 89 e5 mov %rsp,%rbp
printf("Hello, World!"); 1151: 48 8d 05 ac Oe 00 00
return 0; lea Oxeac(%rip),%rax # 2004
<_IO0_stdin_used+0x4>
1158: 48 89 c7 mov %rax,%srdi
115b: e8 fo fe ff ff call 1050 <puts@plt>
1160: b8 00 00 00 00 mov $0x0,%eax
)))) 1165: 5d pop %rbp
We will not cover this conversion in 1166: c3 ret
detail. CS 4620 - Compilers
. . . . ’ 1
is a class dedicated to building and We'll focus on understanding the
understanding the program designed output of the program and how this
to do this conversion. output gets executed on a machine

fiil URNVERSITY | pNGINEERING

THE ISA ALSO INCLUDES FLOATING LAYOUT
SUPPORTED AND REGISTER AND THEIR
DESCRIPTION

https://www.elsevier.com/ data/assets/pdf file/0011/
297533 /RISC-V-Reference-Data.pdf

Let’s look at the section that describes floating point
And instruction encodings. Focus many on the

second page

filli UNRERSITY | ENGINEERING

https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf
https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

filli UNRERSITY | ENGINEERING

