CS0 2130

TOY Proccessor

Daniel G. Graham PhD

i UNWERSITY | pNIGINEERING

Contents

A full overview of Toy ISA

Build a machine (Toy
Processor) that can execute
our Toy ISA

Discuss the fetch, decode,
execute, memory, and
writeback stages

Discuss the steps need to
synthesize or toy processor

icode b | meaning

o[- FULL ISA

1 rA += rB
2 rA &= rB
3 rA. = read from memory at address rB Let look at each
4 write rA to memory at address rB of these
5 0O | rA = ~rA . :
instructions
1| rA = -rA
2 | YA = IrA
3 | rA = pc
6 0 | rA =read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB

. q IVERSITY
else increment pc as normal i 7virena | ENGINEERING

1 BYTE AND 2 BYTE INSTRUCTIONS

CLK
g We'll add a mux that will select
' Ha ok passing one to adder or two.
/ . .
The mux will be controlled with a
o —1 CLK —L control line Cy. But what
N 2 component provides the control
8-bit signal? Answer the Controller
PC

Co

filli UNRERSITY | ENGINEERING

HARDWIRED CONTROL UNIT
icode (b [.. |G
6 X 1

— Icode Co

filli UNRERSITY | ENGINEERING

icode b | meaning
0] rA = rB
1 TA += TB Iicode RA
2 rA &= rB
CLK
G
g I
8 A 16 a1 WERD1
RD ¥ -1 A2 RD2 >
g
A3
+< _1 > WD3
N

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory atpc + 1

rA +=read from memoryatpc + 1

rA &= read from memory atpc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

W NP O WN -, O

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB
else increment pc as normal

j UNIVERSITY | pNGINEERING

3 rA = read from memory at address rB
4 write rA to memory at address rB

Looks like we have a conflict. Thoughts on how we
could fix this?

CLK Cs
C, |
8 I RD1 — WE
DI

8 16 a1 WERD1

- A RDP> S
A2 RD2 |

RD2 —— aqqr DO

A3

d
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

3 rA = read from memory at address rB

4 write rA to memory at address rB Let’s execute some sample
instructions

CLK C;
C, |
3 I RD1 === p WE
16 a1 WERD1
- A RDIS S
d Az RBZ RD2 = Addr DO |
A3
S 1 _> WD3 _E
§ - | .
2 S
8-bit
PC ¢, T
Cs

filli UNRERSITY | ENGINEERING

1 rA += rB
2 rA &= rB Let’s execute some sample
3 rA = read from memory at address rB instructions
4 write rA to memory at address rB
CLK C;
C |
8 I RD1 WE
16 a1 WERD1 o
A A RD[% 5
d Az RBZ RD2 = Adar DO |
A3
S 1 _> WD3 _E
N

= .
d
T

filli UNRERSITY | ENGINEERING

icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB

—_—

) O | rA = ~rA
1| rA = -rA
2 | TA = IrA
3 | rA = pc
6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memory atpc + 1
2 | rA &=read from memory atpc + 1
3 | rA=read from memory at the address stored atpc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2's-complement to 0

if rA <= Osetpc = rB

else increment pc as normal

UNIVERSITY
7VIRGINIA

ENGINEERING

5 0 rA = ~rA
1| rA = -rA Draw out the flow here
2 rA = IrA
3 | rA = pc
CLK C;
C, |
g I RD1 = VE
16 a1 WEgp1
- A RD[* .
d Az RBZ RD2 = Adar DO |
A3
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

5 0 | rA = ~rA How can we update
1| rA = -rA RA with the PC
= |
2 | rA = IrA value?
3 | rA = pc
CLK C;
8 I RD1 = Dpi WE
s 16 a1 WERD1
RD ¥ A2 RD2 >

RD2 =1 Addr DO [7]

A3

e
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

5 0 | rA = ~rA How can we update
1| rA = -rA RA with the PC
= '
2 | rA = IrA value?
3 | rA = pc
CLK C;
g I o1 —p VF
| 8 R 16 a1 WEgp1
RD ¥ A2 RD2 >

RD2 =1 Addr DO [7]

A3

e
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

5 0| rA = ~rA Changed it to just be
1| rA = -rA the label
2 rA = IrA
3 | rA = pc
CLK C;
g I o1 —p VF
s 16 a1 WEgp1
RDT™ A2 RD2 >

RD2 =1 Addr DO [7]

A3

e
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memory atjpc + 1 The immediate
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memory atpc + 1 immediate
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate &t I
3 8 I RD1 = VE
8 16+ Al WERDl
A A RD[S o RD2 S
RD2 == Add DO I
q A3 r
+< _1 _> WD3 _E
N

PC

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1 How could we
1 | rA +=read from memoryatpc + 1 implement this
2 | rA &=read from memory atpc + 1 instruction
3 | rA =read from memory at the address stored at pc + 1
CLK &
Immediate &t I
g 8 I oL ——{ o1
8 161‘ a1 WERD1
A A RD[S N RD2 S
RD2 =1 Addr DO [M]
-~ A3 r
+< _1 > WD3 _JZ
N

filli UNRERSITY | ENGINEERING

1 _> _WD3
d

6 0 | rA=read from memoryatpc + 1 Walk through the flow of
1 | rA +=read from memory atpc + 1 an example instruction
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored at pc + 1 I icode | RA I
CLK C;
Immediate (|:1 I
8 RD] = WE
8 ‘16+ a1 WEgp1 4
>~ A RD[IS
A2 RD2 = | agqr DO |
A3

|

filli UNRERSITY | ENGINEERING

6 0 | rA=readfrom memoryatpc + 1 o _
1 | rA +=read from memory at pc + 1 What about this instruction?
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate ! I
3 8 I RD1 = VE
8 16+ Al WE RD1
\‘ A RD \‘ >
d Az RBZ RD2 = Adar DO |
A3
+< _1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memory atpc + 1 Again we just need a mux
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored atpc + 1
CLK C;
Immediate &t I
g 8 I RD1 = VE
8 16+ Al WE RD1
¥ A ROPY A2 RD2 > RD2
DO ™
A N - :D— Addr
K WD3 Ce
A P N =
N
d

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memory at pc + 1 What about these instructions
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate (|:1 I
8 8 RD1 = WE
8 16+ Al WE RD1 DI
x A RD[S
A2 RD2 > RD2 adgr DO
- A3 IM '
K WD3 Ce
A P N =
N
d

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1 Just need a mux
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate &t I
g 8 I RD1 = VE
8 16+ Al WERDl
¥ A ROPY A2 RD2 > RD2
Addr PO [T
-~ A3 ::D_ ||v|:| ; r
K WD3 Ce
A P N =
N
d

filli UNRERSITY | ENGINEERING

_> ~ WD3
d

7 Compare rA as 8-bit 2's-complement to 0 How do we implement
if rA <= Osetpc = rB this one?
else increment pc as normal Talk to your neighbor
G
CLK c I
Immediate ! WE
8 I RD1 === D|
8 16+ Al WE gp1
¥ A RDI™ A2 RD2 RIDJ:D— Addr DO [
4 A ::D_ Co
s~ .
8 -1
N

filli UNRERSITY | ENGINEERING

7 Compare rA as 8-bit 2’s-complement to 0
If rA <= Osetpc = rB
else increment pc as normal

Notice the sign
flag output by

ALU
CLK SF, ZF Cs
Immediate (|:1 I
g $ 8 RD1 =1 DI WE
8 A 16 a1 WERp1
2 RD
. A2 RD2 > RD2 50 -
1 M Addr
RD2 +< —1 _> WD3 0 Ce
N 2
2
8-bit / ~
PC . H\ —
Cs

filli UNRERSITY | ENGINEERING

7 Compare rA as 8-bit 2’s-complement to 0 !_et S do_a sample
if rA <= Osetpc = rB Instruction
else increment pc as normal I S I
CLK SF, ZF Cs
Immediate €1 I
g $ 8 I RD1 ——
8 A ‘16 Al WE RD1
’ O A2 RD2 > RD2 50 -
o s " — Addr
RD2 0 c
< WD3 6
f —1 — B
> o A Cs c
N 2
2
8-bit d -
PC ., H\ "
Cq

filli UNRERSITY | ENGINEERING

OUR SINGLE CYCLE TOY PROCESSOR

CLK SF, ZF Cs
Immediate (|:1 I
g g 8 RDL ——{p
16 a1 WERD1
RO A2 RD2 RD2 adgr DO
d A3 IM L r
RD2 +< _1 > WD3 0 Cs
_L CS C
N 2 2
8-bit d ”
PC C, T -
Cy
Memory
Fetch Execute

Decode

filli UNRERSITY | ENGINEERING

OUR SINGLE CYCLE TOY PROCESSOR

CLK SF G
Immediate (|:1 I
S ,8 8 RD1 == D WE
16 a1 WERD1
RD I
A2 RD2 RD2 Add DO
"
g A3 M L
RD2 0 C
+< _1 > WD3 6 t
_L CS C
N 2 2
8-bit —
PC ., T -

Write back stages

filli UNRERSITY | ENGINEERING

WHAT ABOUT DETAILS OF THE MAIN MEMORY

1. Howisitimplemented? &
2. How does it work underhood? |
RD1 DI WE
3. Don’t worry we'’ll answer this in CSO 2.
1. Itis actually a complex hierarchy RIDJ:D— Addr DO
including a controller, c.aches, and .
Hardware support for virtual memory —_

like TLBS (translation lookaside buffers)

2. ltdoesn’t always return a valuein a
single cycle so the controller might
have to insert nops in the pipeline etc.

filli UNRERSITY | ENGINEERING

WHAT ABOUT FUNCTIONS

S

F(x,a)

Jump back to the main code

filli UNRERSITY | ENGINEERING

WHAT ABOUT FUNCTIONS

A
0
7’
7
- 7
F(x,a) /// F(x,a) .
- But the next time
3 - we call the
_e° Y- function. It needs
»” =" to return to a
F(x,a) B L different location
C

filli UNRERSITY | ENGINEERING

SAVE PC =
instruction after
the function call

SAVE PC =
instruction after
the function call

v

F(x,a)

rd
//
F(x,a) ///
s
b
Ve
B L
v d -
s -
e -
v ”’
F(Xla) ’a””
C

-
g

Jump back
to saved
value

UNIVERSITY
7VIRGINIA

ENGINEERING

DEFINING A NEW INSTRUCTION

Let’s create a new instruction that will both save the
location to return and jump to the beginning of the
function. We’ll name this our call instruction

Save pc+2 , set pc = M[pc+1]

Let’s also create an instruction that sets the PC back
to the saved. We’ll name this our return instruction or
ret for short

pc = Saved Value

A
call__—
_—
F(x,a)
ret
B

F(x,a)

VN
i U?/N‘}}/ERSITY

RGINIA

ENGINEERING

WHAT ABOUT FUNCTIONS

What about recursive
F(x,a) functions? Functions
that call themselves

filli UNRERSITY | ENGINEERING

WHAT ABOUT FUNCTIONS

What about recursive
F(x,a) functions? Functions

that call themselves

F(x,a)

Now we need to keep track F(x1,al)
F(x,a) of both the location return
to (multiple function calls
and the register state of
function before the call)

F(x2,a2)

filli UNRERSITY | ENGINEERING

THE STACK OXFF

F(x,a)
OxFE Return address 1
We are going to a region of memory that will hold the OxED F(Xl'al)
stack of function states and their associated return Return address 2
addresses. F(x3,a3)
OxFC Return address 1

By convention keep adding
new things to the stack by
growing it to lower addresses

filli UNRERSITY | ENGINEERING

THE STACK

RSP OXEC OxFF
F(x,a)
OxFE Return address 1
F(x1,al1)
We also define a new register that holds the location OxFD Return address 2
of the TOP of the stack in memory. We’ll name this F(x3,a3)
register RSP OxFC Return address 1

filli UNRERSITY | ENGINEERING

PUSH AND POP INSTRUCTIONS

RSP OXFC OxFF

OxFE

OxFD

We’ll also create two instructions that will add and
remove values from the stack.

OxFC

The push instruction will decrement the RSP and to
the top of the stack

Example push(0x04)

F(x,a)
Return address 1

F(x1,al1)
Return address 2
F(x3,a3)
Return address 1

filli UNRERSITY | ENGINEERING

PUSH AND POP INSTRUCTIONS

OxFF
RSP OxFB
OxFE Fx,a)
X Return address 1
F(x1,al1)
OxFD Return address 2
We'll also create two instructions that will add and
remove values from the stack. F(x3,a3)
OxFC Return address 1
The push instruction will decrement the RSP and to
the top of the stack OxFB 0x04 ‘v

Example push(0x04)

filli UNRERSITY | ENGINEERING

PUSH AND POP INSTRUCTIONS

OxFF
RSP OxFB
F(x,a)
OxFE Return address 1
F(x1,al1)
OxFD Return address 2
We'll also create two instructions that will add and
remove values from the stack. F(x3,a3
OxFC (x3,a3)
Return address 1
While the pop instruction increments RSP and returns
the value at the top of the stack OxFB 0x04 |

Example x = pop()

filli UNRERSITY | ENGINEERING

PUSH AND POP INSTRUCTIONS

OxFF
RSP OxFC
OxFE
OxFD
We'll also create two instructions that will add and
remove values from the stack.
OxFC

While the pop instruction returns the value at the top
of the stack and then increments RSP

Example x = pop() returns 0x04

F(x,a)
Return address 1

F(x1,al1)
Return address 2
F(x3,a3)
Return address 1

filli UNRERSITY | ENGINEERING

WHAT ABOUT THE FUNCTION PARAMETERS

We need to define a calling convention. The rules that
we’ll follow when we call a function.

1.

For our simple processor functions are limited to
2 parameters.

The first parameter will be stored in R2
The second parameter will be stored in R3

The return value of the function will be stored in
RO

If the function uses any other registers save them
before modifying them and restore them before
returning.

input = OxFF
shiftAmount = 0x02
output = left_shift(input, shiftAmount)

e

R2 = OxFF
R3 = 0x02
call left_shift

RO //Contains result

filli UNRERSITY | ENGINEERING

THOUGHT EXPERIMENTS

Could you implement the left_shift function using our Hint: Left shifts by 1 is equivalent to multiplying
toy ISA? the number by 2.

output = left_shift(input, shiftArmount)

filli UNRERSITY | ENGINEERING

ISA EXTENDED BY SETTING RBIT TO 1

icode b operation
0
0 Decrement rsp and push the contents of rA to the stack
1 Pop the top value from the stack into rA and

increment rsp
2 Push pc+2 onto the stack, set pc = M[pc+1]

pc = pop the top value from the stack
If b is not 2, update the pc as normal.

filli UNRERSITY | ENGINEERING

COULD YOU ADD PUSH, POP, CALL AND RET?

CLK " 3
Immediate (|:1 I
S ,8 8 RD1 == D WE
16 a1 WERD1
RD I
A2 RD2 RD2 Add DO
"
g A3 M L
RD2 0 C
+< _1 > WD3 6 t
N 2 2
8-bit =
PC ., T -

Write back stages

filli UNRERSITY | ENGINEERING

THE MAP (THE IVIACHINE)

@zﬂ} = v [

'S
PCSrc

Control|
Unit ResultSrc
MemWrite

EY

r— funct?s | ALUControla,
14:12

— funct3 (ALUSrc

20 Jop

ImmSre, o
Zero [RegWrite
N

cLK CLK

PCNext °15] A1 E RD1
PC A RD Instr

Instruction
Memory

S|LALUResult |ReadData

Memory
1 WD

3
wD3 Regjster I WriteData
File

PCTarget
+
il
317
PCPlus4

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

i UNYERSTY | ENGINEERING

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

‘ ENGINEERING

& [INIVERSITY
’ffNVIRGINIA

46

THE STACK

The Stack is a region of memory

filli UNRERSITY | ENGINEERING

OUR JOURNEY SO FAR

filli UNRERSITY | ENGINEERING

filli UNRERSITY | ENGINEERING

0000000000001149 <main>:

#include <stdio.h> 1149: f3 Of le fa endbr64
. . 114d: 55 push S%rbp
nt mal.n() {,, iy . 114e: 48 89 e5 mov %rsp,%rbp
printf("Hello, World!"); 1151: 48 8d 05 ac Oe 00 00
return 0; lea Oxeac(%rip),%rax # 2004
<_IO0_stdin_used+0x4>
1158: 48 89 c7 mov %rax,%srdi
115b: e8 fo fe ff ff call 1050 <puts@plt>
1160: b8 00 00 00 00 mov $0x0,%eax
)))) 1165: 5d pop %rbp
We will not cover this conversion in 1166: c3 ret
detail. CS 4620 - Compilers
. . . . ’ 1
is a class dedicated to building and We'll focus on understanding the
understanding the program designed output of the program and how this
to do this conversion. output gets executed on a machine

fiil URNVERSITY | pNGINEERING

RISC-V MACHINE

PCSrc
ResultSrc
MemWrite
funct7s [ALUControl,.o
—— funct3 |ALUSrc

op ImmSrc, o

Zero |RegWrite
-

)

Control
Unit

CLK CLK
CLK | |

19:45 WE3 SrcA [T~ Zero WE

0]PCNext|™]pPC Instr —] A1 RD1
2 RO ALUResult ‘ ReadData

In;:r:‘(‘:)tlon 2620 po RD2 'ﬁ SrcB Data
ry 17 ‘
—] A3 .] — WriteData Memory
WD3 Register WD

File

- . PCTarget

ImmExt

Extend

PCPlus4

Result

filli UNRERSITY | ENGINEERING

RISC-V MACHINE

CORE INSTRUCTION FORMATS

3 o) 2 L 2 3 2
PCSre 31 2T 126 i23: 24 20 19 15 14 12 11 7 6 0

C:)Jr;tirtol ResultSrc R funct?7 | rs2 rsl funct3 rd opcode
0 MemWrite I imm[11:0] rsl funct3 rd opcode

funct7 ” P - .
| e ALUControlzo S imm[11:5] rs2 rsl funct3 imm|[4:0] opcode
— funct3 |ALUSrc
- . ~ R = ~] ~1 H . o o
59 _{op ImmSrog SB imm|[12/10:5] rs2 rsl funct3 imm[4:1]11] | opcode

Zero |RegWrite U imm([31:12] rd opcode

r;/ uJ imm[20[10:1|11]19:12] rd opcode
CLK
CLK | \L wLn |
WE3 WE
0] PCNext|V]pc A RD pnstr 19151 A1 RD1 SrcA Zero
— | i H . O} ALUResult A Rp |ReadData ﬂ
nstruction 24:20 <
Memo — A2 RD2 0 |SrcB Data
ry 17 |
3 Regi . — WriteData Memory
wp3 Register WD
File
— PCTarget
ImmExt
ikl Extend
PCPlus4
Result
4

RIERSIIY | ENGINEERING

THE ISA ALSO INCLUDES FLOATING LAYOUT
SUPPORTED AND REGISTER AND THEIR
DESCRIPTION

https://www.elsevier.com/ data/assets/pdf file/0011/
297533 /RISC-V-Reference-Data.pdf

Let’s look at the section that describes floating point
And instruction encodings. Focus many on the

second page

filli UNRERSITY | ENGINEERING

https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf
https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

filli UNRERSITY | ENGINEERING

