CS0 2130

TOY Proccessor

Daniel G. Graham PhD

i UNWERSITY | pNIGINEERING

Contents

A full overview of Toy ISA

Build a machine (Toy
Processor) that can execute
our Toy ISA

Discuss the fetch, decode,
execute, memory, and
writeback stages

Discuss the steps need to
synthesize or toy processor

icode b | meaning

o[- FULL ISA

1 rA += rB
2 rA &= rB
3 rA. = read from memory at address rB Let look at each
4 write rA to memory at address rB of these
5 0O | rA = ~rA . :
instructions
1| rA = -rA
2 | YA = IrA
3 | rA = pc
6 0 | rA =read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB

. q IVERSITY
else increment pc as normal i 7virena | ENGINEERING

EXAM QUESTION

9. [8 points] Complete the table below listing all the register values as hex digits after the
following code executes. Assume that all registers start with value 0x00.

6c 20 60 FF 2c 04 54 19

Register | Value
0

1
2
3

filli UNRERSITY | ENGINEERING

icode | RA

6c 20 60 FF 2c 04 54 19

Register

Value

0

icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0O | rA = ~rA
1| rA=-rA
2 | rA = IrA
3| rA = pc
6 0 | rA =read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2's-complement to 0

if rA <= Osetpc = rB
else increment pc as normal

1
2
3

-
4iime

2 [INIVERSITY
Zan

RGINIA

ENGINEERING

EXAM QUESTION

9. [8 points] Complete the table below listing all the register values as hex digits after the
following code executes. Assume that all registers start with value 0x00.

6c 20 60 FF 2c 04 54 19

Register | Value
0 FF
1 00
2 00
3 20

filli UNRERSITY | ENGINEERING

LET’S BUILD A TOY PROCESSOR THAT CAN
EXECUTE OUR TOY ISA

filli UNRERSITY | ENGINEERING

INSTRUCTION MEMORY AND INSTRUCTION
REGISTER

I icode | RA I immediate
N I = Instruction register (IR)
N Our diagram is going to have several
CLK comments so | will not draw the IR

Note: input and output widths on the
Instruction memory. The memory is byte-
addressable but reads 2 bytes at a time

filli UNRERSITY | ENGINEERING

1 BYTE AND 2 BYTE INSTRUCTIONS

CLK
g We'll add a mux that will select
' Ha ok passing one to adder or two.
/ . .
The mux will be controlled with a
o —1 CLK —L control line Cy. But what
N 2 component provides the control
8-bit signal? Answer the Controller
PC

Co

filli UNRERSITY | ENGINEERING

HARDWIRED CONTROL UNIT
icode (b [.. |G
6 X 1

— Icode Co

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory atpc + 1

rA +=read from memoryatpc + 1

rA &= read from memory atpc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

W NP O WN -, O

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB
else increment pc as normal

j UNIVERSITY | pNGINEERING

icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB
icode | RA
CLK
G Only the relevant part
8) . —~ \!VE —_ instruction is going to
A= A RD[S Jdo b register file input.
T A3 Icode section and RB will
5 D WD3 also go to the controller.
N L .
. 2 These are not depicted for
8-bit simplicity

filli UNRERSITY | ENGINEERING

icode b | meaning
0 rA = rB
1 rA += rB How would we wire up the
2 rA &= rB ALU?
CLK
C
3 I
8 A ‘16 Al WERDl—
il —~{ A2 RD2 = >
rd
A3
+< _1 > WD3
N

filli UNRERSITY | ENGINEERING

icode b | meaning
0 rA = rB Let’s run three
1 rA += rB instructions
2 rA &= rB
I icode | RA I
CLK
C
| | ooo | oo |
8
8 A 16 a1 WERD1
RDT™ — A RD2 > I 001 | 10 I
A
" [010 [10|
< WD3
A0 P N
\

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB -
1 rA += rB 1. Hex encode each instruction I icode RAI
2. AssumeRO=1,R1=4,R2=3
2 rA 8= rB ’ ’ ’
R3=0 | ooo | oo |
CLK 3. Show all signals on wires I 001 10|
G
3 I
: e a1 WERD1 I 010 | 10 I
-] A RD[*
-1 A2 RD2 >
A
A3
-I-< —1 _> WwD3
\ > .

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB -
1 rA += rB 1. Hex encode each instruction I icode RAI
2. AssumeRO=1,R1=4,R2=3
2 rA &= rB ’ »)
R3=0 I 000 | 00 I
CLK 3. Show all signals on wires I 001 10|
G
: I
: e a1 WERD1 I 010 | 10 I
X A RD[¥
-1 A2 RD2 >
1
A3
-I-< —1 _> WwD3
\ | .

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB -
1 rA += rB 1. Hex encode each instruction I icode RAI
2. AssumeRO=1,R1=4,R2=3
2 rA 8= rB ’ ’ ’
CLK 3. Show all signals on wires I 001 10|
Cy
: I
: e a1 WERD1 I 010 | 10 I
x| A RD[*
-1 A2 RD2 >
S
A3
-I-< —1 _> wD3
N - | .

filli UNRERSITY | ENGINEERING

LET’S NEXT INSTRUCTIONS THAT USE MAIN
MEMORY

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory atpc + 1

rA +=read from memoryatpc + 1

rA &= read from memory atpc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

W NP O WN -, O

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB
else increment pc as normal

j UNIVERSITY | pNGINEERING

rA = read from memory at address rB
|write rA to memory at address rB |

Talk to use neighbor to see if you
can wire this up.

DI

8 16 a1 WERD1

A2 RD2 > L
=] Addr DO

A3

1 > WD3 _Z

filli UNRERSITY | ENGINEERING

rA = read from memory at address rB
|write rA to memory at address rB |

G
8 16 a1 WERD1
x A RDPS
A2 RD2
A3
WD3
—1 >

WE
DI

Addr

filli UNRERSITY | ENGINEERING

DO

rA = read from memory at address rB
|write rA to memory at address rB |

Writing labels for a cleaner look

G
C, |
I RD1 —] WE
DI
8 16 a1 WERD1
x A RDPS S
A2 RD2 |
RD2 — ,4qr DO
A3
WD3 —
—1 > 2

filli UNRERSITY | ENGINEERING

3 rA = read from memory at address rB
4 write rA to memory at address rB

Looks like we have a conflict. Thoughts on how we
could fix this?

CLK Cs
C, |
8 I RD1 — WE
DI

8 16 a1 WERD1

- A RDP> S
A2 RD2 |

RD2 —— aqqr DO

A3

d
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

3 rA = read from memory at address rB

4 write rA to memory at address rB Let’s execute some sample
instructions

CLK C;
C, |
3 I RD1 === p WE
16 a1 WERD1
- A RDIS S
d Az RBZ RD2 = Addr DO |
A3
S 1 _> WD3 _E
§ - | .
2 S
8-bit
PC ¢, T
Cs

filli UNRERSITY | ENGINEERING

1 rA += rB
2 rA &= rB Let’s execute some sample
3 rA = read from memory at address rB instructions
4 write rA to memory at address rB
CLK C;
C |
8 I RD1 WE
16 a1 WERD1 o
A A RD[% 5
d Az RBZ RD2 = Adar DO |
A3
S 1 _> WD3 _E
N

= .
d
T

filli UNRERSITY | ENGINEERING

icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB

—_—

5 O | rA = ~rA
1| rA = -rA
2 | TA = IrA
3 | rA = pc
6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memory atpc + 1
2 | rA &=read from memory atpc + 1
3 | rA=read from memory at the address stored atpc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= Osetpc = rB

else increment pc as normal

NEXT
TIME

UNIVERSITY
7VIRGINIA

ENGINEERING

CSO1 Final Exam - Page 7 of 13 2022-05-9

(d) Throughout the semester we looked at various components associated with a single cycle
processor. Here we designed a simple machine that we call the Interceptor 1000. This
machine has only has two instructions, listed below by their opcodes:

0. nop which does nothing
1. intcep $x, $m, $b which computes mz + b
An example instruction for this machine might be intcep 2 3 1 meaning z is 2, m is
3 and b is 1. This instruction would be encoded as follows:
©®123456789abcdef
LI T 1T T 11

160 0010060011060 0601
| | I .|

In the diagram below, O (1) represents the opcode that is 1 bit long, while X(5) represents
the x value that is 5 bits long.

Figure 1: Block Diagram for Interceptor 10000

EXAM QUESTION

l Address In
3 RAM Show how to complete the diagram by writing the name of the wire each given wire should
< o be connected to. For example, if A is connected to E, write E in the box next to A.
+1
1
2
[0(1) X(5) M(5) B(8)F—— 3
A B C D 4
E F 5
|
Data Out
|
J 1 L in out
0 -
N] IVERSITY
K filli UNRERSITY | ENGINEERING

fiil URNVERSITY | pNGINEERING

28

5 O | rA = ~rA
1| rA = -rA Draw out the flow here
2 | rA = IrA
3 | rA = pc
CLK C;
C |
8 I RD1 = Dpi WE
A2 RD2 >

RD2 == Addr DO ™

A3

e
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

5 0 | rA = ~rA How can we update
1| rA = -rA RA with the PC
= |
2 | rA = IrA value?
3 | rA = pc
CLK C;
8 I RD1 = Dpi WE
s 16 a1 WERD1
RD ¥ A2 RD2 >

RD2 =1 Addr DO [7]

A3

e
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

5 0 | rA = ~rA How can we update
1| rA = -rA RA with the PC
= '
2 | rA = IrA value?
3 | rA = pc
CLK C;
g I o1 —p VF
| 8 R 16 a1 WEgp1
RD ¥ A2 RD2 >

RD2 =1 Addr DO [7]

A3

e
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

5 0| rA = ~rA Changed it to just be
1| rA = -rA the label
2 rA = IrA
3 | rA = pc
CLK C;
g I o1 —p VF
s 16 a1 WEgp1
RDT™ A2 RD2 >

RD2 =1 Addr DO [7]

A3

e
S 1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memory atjpc + 1 The immediate
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memory atpc + 1 immediate
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate &t I
3 8 I RD1 = VE
8 16+ Al WERDl
A A RD[S o RD2 S
RD2 == Add DO I
q A3 r
+< _1 _> WD3 _E
N

PC

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1 How could we
1 | rA +=read from memoryatpc + 1 implement this
2 | rA &=read from memory atpc + 1 instruction
3 | rA =read from memory at the address stored at pc + 1
CLK &
Immediate &t I
g 8 I oL ——{ o1
8 161‘ a1 WERD1
A A RD[S N RD2 S
RD2 =1 Addr DO [M]
-~ A3 r
+< _1 > WD3 _JZ
N

filli UNRERSITY | ENGINEERING

1 _> _WD3
d

6 0 | rA=read from memoryatpc + 1 Walk through the flow of
1 | rA +=read from memory atpc + 1 an example instruction
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored at pc + 1 I icode | RA I
CLK C;
Immediate (|:1 I
8 RD] = WE
8 ‘16+ a1 WEgp1 4
>~ A RD[IS
A2 RD2 = | agqr DO |
A3

|

filli UNRERSITY | ENGINEERING

6 0 | rA=readfrom memoryatpc + 1 o _
1 | rA +=read from memory at pc + 1 What about this instruction?
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate ! I
3 8 I RD1 = VE
8 16+ Al WE RD1
\‘ A RD \‘ >
d Az RBZ RD2 = Adar DO |
A3
+< _1 > WD3 _E
N

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memory atpc + 1 Again we just need a mux
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored atpc + 1
CLK C;
Immediate &t I
g 8 I RD1 = VE
8 16+ Al WERDl
¥ A ROPY A2 RD2 > RD2
Addr PO [T
- A3 IM :|> '
K WD3 Cs
A P N =
N
d

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memory at pc + 1 What about these instructions
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate (|:1 I
g 8 RD1 — WE
8 16+ Al WE RD1 DI
x A RD[S
A2 RD2 > RD2 vy =
rd A3 Immed:D_ Addr
K WD3 Cs
A P _ =
N 2 L G
: d
8-bit —~

PC Co T_ Immed

filli UNRERSITY | ENGINEERING

6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1 Just need a mux
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1
CLK C;
Immediate &t I
g 8 I RD1 = VE
8 16+ Al WERDl
¥ A ROPY A2 RD2 > RD2
Addr PO [T
-~ A3 ::D_ ||v|:| ; r
K WD3 Cs
A P N =
N
d

filli UNRERSITY | ENGINEERING

NOW FOR OUR FINAL INSTRUCTIONS
OUR CONDITIONAL JUMP

filli UNRERSITY | ENGINEERING

_> ~ WD3
d

7 Compare rA as 8-bit 2's-complement to 0 How do we implement
if rA <= Osetpc = rB this one?
else increment pc as normal Talk to your neighbor
G
CLK c I
Immediate ! WE
8 I RD1 === D|
8 16+ Al WE gp1
¥ A RDI™ A2 RD2 RIDJ:D— Addr DO [
4 A ::D_ Gs
-
8 -1
N

filli UNRERSITY | ENGINEERING

7 Compare rA as 8-bit 2’s-complement to 0
If rA <= Osetpc = rB
else increment pc as normal

Notice the sign
flag output by

ALU
CLK SF CS
Immediate (|:1 I
g g ’ RD1 ——]pi
8 16 a1 WERp1
x~ A RDPS
. A2 RD2 > RD2 50 -
1 M Addr
Rb2 S 1 _> WD3 0 Cs
_L C
Y ’ C,
2
8-bit / ~
PC . H\ —
Cs

filli UNRERSITY | ENGINEERING

7 Compare rA as 8-bit 2’s-complement to @ !-Et S do_a sample
if rA <= Osetpc = rB Instruction
else increment pc as normal I S I
CLK m g
Immediate €1 I
g $ 8 I RD1 ——
8 A ‘16 Al WE RD1
’ O A2 RD2 > RD2 50 -
o s " — Addr
RD2 0 c
< WD3 5
+ —1 — B
> o A Cs c
N 2
2
8-bit d -
PC ., H\ "
Cs

filli UNRERSITY | ENGINEERING

WHAT ABOUT DETAILS OF THE MAIN MEMORY

1. Howisitimplemented? &
2. How does it work underhood? |
RD1 DI WE
3. Don’t worry we'’ll answer this in CSO 2.
1. Itis actually a complex hierarchy RIDJ:D— Addr DO
including a controller, c.aches, and .
Hardware support for virtual memory —_

like TLBS (translation lookaside buffers)

2. ltdoesn’t always return a valuein a
single cycle so the controller might
have to insert nops in the pipeline etc.

filli UNRERSITY | ENGINEERING

THE MAP (THE IVIACHINE)

@zﬂ} = v [

'S
PCSrc

Control|
Unit ResultSrc
MemWrite

EY

r— funct?s | ALUControla,
14:12

— funct3 (ALUSrc

20 Jop

ImmSre, o
Zero [RegWrite
N

cLK CLK

PCNext °15] A1 E RD1
PC A RD Instr

Instruction
Memory

S|LALUResult |ReadData

Memory
1 WD

3
wD3 Regjster I WriteData
File

PCTarget
+
il
317
PCPlus4

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

i UNYERSTY | ENGINEERING

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

RISC-V MACHINE

PCSrc
ResultSrc
MemWrite
funct7s [ALUControl,.o
—— funct3 |ALUSrc

op ImmSrc, o

Zero |RegWrite
-

)

Control
Unit

CLK CLK
CLK | |

19:45 WE3 SrcA [T~ Zero WE

0]PCNext|™]pPC Instr —] A1 RD1
2 RO ALUResult ‘ ReadData

In;:r:‘(‘:)tlon 2620 po RD2 'ﬁ SrcB Data
ry 17 ‘
—] A3 .] — WriteData Memory
WD3 Register WD

File

- . PCTarget

ImmExt

Extend

PCPlus4

Result

filli UNRERSITY | ENGINEERING

RISC-V MACHINE

CORE INSTRUCTION FORMATS

3 o) 2 L 2 3 2
PCSre 31 2T 126 i23: 24 20 19 15 14 12 11 7 6 0

C:)Jr;tirtol ResultSrc R funct?7 | rs2 rsl funct3 rd opcode
0 MemWrite I imm[11:0] rsl funct3 rd opcode

funct7 ” P - .
| e ALUControlzo S imm[11:5] rs2 rsl funct3 imm|[4:0] opcode
— funct3 |ALUSrc
- . ~ R = ~] ~1 H . o o
59 _{op ImmSrog SB imm|[12/10:5] rs2 rsl funct3 imm[4:1]11] | opcode

Zero |RegWrite U imm([31:12] rd opcode

r;/ uJ imm[20[10:1|11]19:12] rd opcode
CLK
CLK | \L wLn |
WE3 WE
0] PCNext|V]pc A RD pnstr 19151 A1 RD1 SrcA Zero
— | i H . O} ALUResult A Rp |ReadData ﬂ
nstruction 24:20 <
Memo — A2 RD2 0 |SrcB Data
ry 17 |
3 Regi . — WriteData Memory
wp3 Register WD
File
— PCTarget
ImmExt
ikl Extend
PCPlus4
Result
4

RIERSIIY | ENGINEERING

THE ISA ALSO INCLUDES FLOATING LAYOUT
SUPPORTED AND REGISTER AND THEIR
DESCRIPTION

https://www.elsevier.com/ data/assets/pdf file/0011/
297533 /RISC-V-Reference-Data.pdf

Let’s look at the section that describes floating point
And instruction encodings. Focus many on the

second page

filli UNRERSITY | ENGINEERING

https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf
https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

0000000000001149 <main>:

#include <stdio.h> 1149: f3 Of le fa endbr64
. . 114d: 55 push S%rbp
nt mal.n() {,, iy . 114e: 48 89 e5 mov %rsp,%rbp
printf("Hello, World!"); 1151: 48 8d 05 ac Oe 00 00
return 0; lea Oxeac(%rip),%rax # 2004
<_IO0_stdin_used+0x4>
1158: 48 89 c7 mov %rax,%srdi
115b: e8 fo fe ff ff call 1050 <puts@plt>
1160: b8 00 00 00 00 mov $0x0,%eax
)))) 1165: 5d pop %rbp
We will not cover this conversion in 1166: c3 ret
detail. CS 4620 - Compilers
. . . . ’ 1
is a class dedicated to building and We'll focus on understanding the
understanding the program designed output of the program and how this
to do this conversion. output gets executed on a machine

fiil URNVERSITY | pNGINEERING

NEXT WE’LL TALK ABOUT WRITING

PROGRAMS THAT SIMULATE OUR
ARCHITECTURE

filli UNRERSITY | ENGINEERING

‘ ENGINEERING

& [INIVERSITY
’ffNVIRGINIA

51

filli UNRERSITY | ENGINEERING

