CS0 2130

Instruction Set Architecture

Daniel G. Graham PhD

i UNWERSITY | pNIGINEERING

REVIEW

filli UNRERSITY | ENGINEERING

SUBSET OF OUR TOY ISA

icode b Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

/7 6 5 4 3 2 10

R

icode

/7 6 5 4 3 2 10

a b

immediate

filli UNRERSITY | ENGINEERING

—— Contents

Full overview of Toy ISA

Some memory Operations
with the Toy ISA

Loops and Conditionals with
Toy ISA

Writing and simulating
more complex programs
with Toy ISA

icode b | meaning

; rA = T8 FULL ISA

1 rA += rB

2 rA &= rB

3 rA. = read from memory at address rB we'll give the

4 write rA to memory at address rB full description

> O A=A of ISA at the
1| rA = -rA _
> | rA = 1rA begin of every |
3 | rA = pc exam. In fact this

6 0 | rA-=readfrom memoryatpc + 1 a picture of what
1 | rA+=read from memory at pc + 1 we will give you.
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB

. q IVERSITY
else increment pc as normal i 7virena | ENGINEERING

icode b | meaning
o |rA e FULL ISA
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB More operations
4 write rA to memory at address rB with immediates
5 0O | rA = ~rA
1| rA = -rA
2 | YA = IrA
3 | rA = pcC
6 0 | rA =read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memoryatpc + 1
3 | rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB S
else increment pc as normal ovioiNia. | ENGINEERING

MEMORY OPERATIONS

icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB _ . .
3 rA = read from memory at address rB These instructions are a little
4 write rA to memory at address rB tricky. So, let’s spend some
time on them.
7 6 5 4 3 2 10 7 6 5 4 3 2 10
R| icode a b immediate

filli UNRERSITY | ENGINEERING

READ FROM MEMORY ADDRESS STORED IN RB

Registers
-ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ

RO| X 64 23 31
R1| X 10
R2| X 20 FF

30
R3| X

What are the values of RO and R1. Once program completes?

PC| 00

fil ONERSTY | ENGINEERING

Registers

RO| X 64 23 31
R1| X 10
R2| X 20 FF
30
R3| X
6 0 | rA= réad from memory atpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

fil ONERSTY | ENGINEERING

Registers

RO| X 64 23 31
R1| X 10
R2| X 20 FF
30
R3| X
6 0 ‘ rA=réad from memory atpc + 1
PC| 00
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
R| icode a b immediate

fil ONERSTY | ENGINEERING

Registers

RO| X 64 23 31
R1| X 10
R2| X 20 FF
30
R3| X
6 0 ‘ rA=réad from memory atpc + 1
PC| 00
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
0 110 01 00 00100011

fil ONERSTY | ENGINEERING

Registers

RO| X 64 23 31
R1| 23 10
R2| X 20 FF
30
R3| X
6 0 ‘ rA=réad from memory atpc + 1
PC| 02
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
0 110 01 00 00100011

PC Updates to 2 so what instruction will we execute next?

fil ONERSTY | ENGINEERING

Registers

RO

R1

23

R2

R3

PC

02

64 23 31
10
20 FF
30
icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB

fil ONERSTY | ENGINEERING

Registers

RO| X 64 23 31
R1] 23 10
R2| X 20 FF
30
R3] X
3 ‘ rA = read from memory at address rB
PC| 02
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
R| icode a b immediate

fil ONERSTY | ENGINEERING

Registers

RO| X 64 23 31
R1| 23 10
R2| X 20 FF
30
R3] X
3 rA = read from memory at address rB
PC| 02

/7 6 5 4 3 2 10
O 011 00 01

fil ONERSTY | ENGINEERING

Registers

R_O- 64 23 31
R1| 23 10
r2| x 20 2
30
R3| X
3 | rA = read from memory at address rB
PC| 03
7 6 5 43 2 10 RBis R1 and it stores 0x23.
0 011 00 01 So, we go location 23 in memory and

retrieve the value OxFF.
STOP. And talk to you neighbor

fil ONERSTY | ENGINEERING

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0| rA = ~rA
1| rA = -rA
2 | TA = IrA
3 | rA = pc
6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1 Let’s look at
2 =read from memaryatnc _+ 1 this instruction
3 | JrA = read from memory at the address stored at pc + 1 now?
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’'s-complement to 0

if rA <= @setpc = rB
else increment pc as normal

fiil URNVERSITY | pNGINEERING

READ FROM MEMORY ADDRESS STORED IN RB

Registers

RO| X 63 37
R1| X 10
R2| X 20 FF
30 BB
R3| X
i - What are the values of RO. Once program completes?

fil ONERSTY | ENGINEERING

Registers

ROl X 63 37
R1[X 10
R2| X 20 FF
30 BB
R3| X
6 0 | rA=read from memoryatpc + 1

PC| 00 1 | rA +=read from memory atpc + 1

2 | rA &=read from memory atpc + 1

3 | rA =read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

fil ONERSTY | ENGINEERING

Registers

ROl X 63 37
R1[X -
R2| X 20 FF
30 BB
R3| X
3 | rA =read from memory at the address stored atpc + 1
rc| 0o For icode 6, increase pc by 2 at end of instruction
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
R| icode a b immediate

fil ONERSTY | ENGINEERING

Registers

RO| BB 63 37
R1[X 10
R2| X 20 FF
30 BB
R3| X
3 | rA =read from memory at the address stored atpc + 1
ocl oo For icode 6, increase pc by 2 at end of instruction
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
0 110 00 11 00110111

fil ONERSTY | ENGINEERING

MEMORY WRITES WORK IN A SIMILAR WAY

filli UNRERSITY | ENGINEERING

REGISTER SPILLING

Because we have a limited number of registers, we can’t store all variables in registers,
so we must store some in memory and read them into a register when we need them.

Here is the strategy

1. Read the register value to a predetermined location in memory.

Use the register
Write the register value back to memory, so that it can be used to store something

else
Architecture 8 bit 32 bit 64 bit
ARM X 15 31
Intel x86 X 8 16
Toy ISA 4 X X

il UNIVERSITY | pNGINEERING

REGISTER SPILLING

RO = M[0x31]

RO += 2
R1 = 0x31
M[R1] = RO

After this point RO can be
used for something else

filli UNRERSITY | ENGINEERING

REGISTER SPILLING

icode b | meaning
RO = M[OXB]_] 0 rA = rB
RO += 2 1 rA += rB
R1 = 0x31 2 rA &= rB
3 rA = read from memory at address rB
M[R1] = RO 4 write rA to memory at address rB

M[RB] = RA

filli UNRERSITY | ENGINEERING

RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
o M[R1] = RO Ox41
egisters
—— -ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ
63 31 61 02 64 31 41
R1| X
10
R2| X
20
R3| X 30 02
PC| 00 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING

RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
o M[R1] = RO Ox41
egisters
—— -ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ
63 31 61 02 64 31 41
R1| X
10
R2| X
20
R3| X 30 02
PC| 00 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING

RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
o M[R1] = RO Ox41
egisters
—— -ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ
63 31 61 02 64 31 41
R1| X
10
R2| X
20
R3| X 30 02
PC| 02 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING

RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
o M[R1] = RO Ox41
egisters
—— -ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ
63 31 61 02 64 31 41
R1| 31
10
R2| X
20
R3] X 30 02
PC| 04 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING

RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
Registers M[R1] = RO 0x41
63 31 61 02 64 31 41
R1| 31
10
R2| X
20
R3] X 30 04
PC| 06 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING

CONDITIONAL IF ELSE

x = M[0xO0F] Memory Map 10 (Input/output)

If x > 0O:
X 4= 1
Flse: Let’s |mpler_nent this
program using our
X &= 7/

instructions

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB FULL ISA
rA += rB
rA &= rB

rA = read from memory at address rB
write rA to memory at address rB

gl W N -

rA = ~rA
rA = -rA
rA IrA
rA = pc

rA = read from memory atpc + 1

rA +=read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6. increase pc by 2 at end of instruction

()]
W NP OWNBEFEe O

7 Compare rA as 8-bit 2's-complement to 0
ifrA <= Osetpc = rB
else increment pc as normal

filli UNRERSITY | ENGINEERING

LET’S ALLOCATE REGISTERS AND PICK

INSTRUCTIONS
x = M[OxOF] RO = M[0x20]
If x > 0: R1 = Let’s leave blank for now
X += 1 If RO <= 0 set PC= RI
Else: RO += 1
X &= 7/ RO &= 2

filli UNRERSITY | ENGINEERING

LET’S CALCULATE WHERE TO JUMP TO

Memory Address Size of Instruction
0x00 RO = M[0x20] 2 Bytes
0x02 R1 = 2 Bytes
0x04 If RO <= 0 set PC= RI 1 Byte
0x05 RO#= 1 2 Bytes
0x07 RO &= 2 2 Bytes

So what address do we want R1 to be?

filli UNRERSITY | ENGINEERING

LET’S CALCULATE WHERE TO JUMP TO

Memory Address Size of Instruction
0x00 RO = M[0x20] 2 Bytes
0x02 R1 = 0x07 2 Bytes
0x04 If RO <= 0 set PC= RI 1 Byte
0x05 RO#= 1 2 Bytes
0x07 RO &= 2 2 Bytes

So what address do we want R1 to be?

filli UNRERSITY | ENGINEERING

LET’S CALCULATE WHERE TO JUMP TO

Memory Address
0x00 RO = M[0x20]
x = M[0x0F] 0x02 R1 = 0x07
If x> 0: :I; 0x04 If RO <= 0 set PC= Rl
x =1 0X05 RO += 1
Else: Ox07 RO &= 2
X &=

So what address do we want R1 to be?
Be really careful of the fall through case.

filli UNRERSITY | ENGINEERING

LOOPS

filli UNRERSITY | ENGINEERING

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory atpc + 1

rA +=read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored atpc + 1
For icode 6, Increase pc by 2 at end of instruction

W N R OfWwIN -, O

7 Compare rA as 8-bit 2's-complement to 0
if rA <= Osetpc = rB
else increment pc as normal

URNIVERSITY | pNGINEERING

WRITE A LOOP

First, rewrite as a do-while loop. (This due to limitation in Toy ISA) reasons will be clear

later.
X = 2
X =2 i=0
for (1 = 0; 1 < 5; 1i+4+4+)/{ do {
} i+
}while (1<5)

filli UNRERSITY | ENGINEERING

WRITE A LOOP

X =2 RO = 2
i =20
do {

x+=1

4+

twhile (1<5)

filli UNRERSITY | ENGINEERING

WRITE A LOOP

X = 2 RO = 2
i =0 R1 = 0
do {

x+=1

1++

twhile (1<5)

filli UNRERSITY | ENGINEERING

WRITE A LOOP

% = 2 RO = 2 Store the memory address
_ of the beginning of the
v . loop : ;
o] R2 = PC
x+=1
14+

twhile (1<5)

filli UNRERSITY | ENGINEERING

WRITE A LOOP

X = 2 RO = 2
i = R1 =0
do | R2 = PC
RO += 1
x+=1
1++

twhile (1<5)

filli UNRERSITY | ENGINEERING

WRITE A LOOP

X
I
N
5
|
N

i =0 R1 =0
do | R2 = PC
B RO += 1
xt=1 R1 += 1
1+

twhile (1<5)

filli UNRERSITY | ENGINEERING

WRITE A LOOP

B RO = 2
X = 2

. Rl =0
1 =0 R2 = PC
do { RO += 1
x+=1 R1 += 1
i_|__|_ R3=R1
R3+= -5

}while (1<5) .
if R3 <=0 then PC = R2

But wait is that correct? }

filli UNRERSITY | ENGINEERING

SEE IF YOU CAN ENCODE THIS AND RUN IT IN
THE SIMULATOR

filli UNRERSITY | ENGINEERING

WRITE A LOOP

B RO = 2
X = 2

. Rl =0
1 =0 R2 = PC
do { RO += 1
x+=1 R1 += 1
i_|__|_ R3=Rl
R3+= -5

}while (1<5) .
if R3 <=0 then PC = R2

/ But wait is that correct? Translating the condition can be tricky T

filli UNRERSITY | ENGINEERING

WRITE A LOOP

% = 2 RO = 2 0x60 02
. R1 =0 0x64 0x00
1 =0 R2 = PC 0X5B
do { RO += 1 0x61 0x01
x+=1 Rl += 1 0x65 0x01
144 R3 = R1 Ox0D
R3+= -4 0x6D OxFC

Jwhile (i<5) .
if R3 <=0 then PC = R2 Ox7E

-3,-2,-1,0, 1 (five times)

filli UNRERSITY | ENGINEERING

Toy ISA Simulator

Choose File | no file selected

Y

00000000/00000000/OO00Q00000/ 00000000

Execute one instruction
Run 'WiIth 15

Reset

00
00

seconds between instructions

00
00
00
00

UNIVERSITY

E 7VIRGINIA

ENGINEERING

filli UNRERSITY | ENGINEERING

FROM TOY ISA TO RISC-V

filli UNRERSITY | ENGINEERING

SOME PERPECTIVE (RISC-V)

The RISC-V Instruction Set Manual
Volume I: User-Level ISA
Document Version 2.2

Editors: Andrew Waterman!, Krste Asanovié!+?

1SiFive Inc.,
2CS Division, EECS Department, University of California, Berkeley
andrew@sifive.com, krste@berkeley.edu

May 7, 2017

Available at: https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

filli UNRERSITY | ENGINEERING

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

31 25 24 20 19 15 14 12 11 76 0

| funct? [rs2 [sl [funct3 | rd | opcode |R-type
| imm[11:0] | rsl |funct3| rd | opcode |I-type
| imm[11:5] | rs2 | rsl | funct3 | imm[4:0] | opcode | S-type
| imm[31:12] | rd | opcode |U-type

R-Format: instructions using 3 register inputs
I-Format: instructions with immediates, loads

S-Format: store instruction

U-Format: instructions with upper immediates

Detailed Data Sheet: https://www.elsevier.com/ data/assets/pdf file/0011/297533/RISC-V-Reference-Data.pdf

fiil URNVERSITY | pNGINEERING

https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

RISC VS CISC

RISC-V ADD X86 Add

https://msyksphinz-self.github.io/riscv- https://www.felixcloutier.com/x86/add
isadoc/html/rvi.html#addi

filli UNRERSITY | ENGINEERING

https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://www.felixcloutier.com/x86/add

fiil URNVERSITY | pNGINEERING

57

