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SUBSET OF OUR TOY ISA

icode b Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

/7 6 5 4 3 2 10

R

icode

/7 6 5 4 3 2 10

a b

immediate
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icode b | meaning

; rA = T8 FULL ISA

1 rA += rB

2 rA &= rB

3 rA. = read from memory at address rB we'll give the

4 write rA to memory at address rB full description

> O A=A of ISA at the
1| rA = -rA _
> | rA = 1rA begin of every |
3 | rA = pc exam. In fact this

6 0 | rA-=readfrom memoryatpc + 1 a picture of what
1 | rA+=read from memory at pc + 1 we will give you.
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB

. q IVERSITY
else increment pc as normal i 7virena | ENGINEERING




icode b | meaning
o |rA e FULL ISA
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB More operations
4 write rA to memory at address rB with immediates
5 0O | rA = ~rA
1| rA = -rA
2 | YA = IrA
3 | rA = pcC
6 0 | rA =read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memoryatpc + 1
3 | rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0
if rA <= O@setpc = rB S
else increment pc as normal ovioiNia. | ENGINEERING




MEMORY OPERATIONS

icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB _ . .
3 rA = read from memory at address rB These instructions are a little
4 write rA to memory at address rB tricky. So, let’s spend some
time on them.
7 6 5 4 3 2 10 7 6 5 4 3 2 10
R| icode a b immediate
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READ FROM MEMORY ADDRESS STORED IN RB

Registers
-ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ

RO| X 64 23 31
R1| X 10
R2| X 20 FF

30
R3| X

What are the values of RO and R1. Once program completes?

PC| 00

fil ONERSTY | ENGINEERING




Registers

RO| X 64 23 31
R1| X 10
R2| X 20 FF
30
R3| X
6 0 | rA= réad from memory atpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memoryatpc + 1
3 | rA =read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

fil ONERSTY | ENGINEERING




Registers

RO| X 64 23 31
R1| X 10
R2| X 20 FF
30
R3| X
6 0 ‘ rA=réad from memory atpc + 1
PC| 00
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
R| icode a b immediate

fil ONERSTY | ENGINEERING




Registers

RO| X 64 23 31
R1| X 10
R2| X 20 FF
30
R3| X
6 0 ‘ rA=réad from memory atpc + 1
PC| 00
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
0 110 01 00 00100011

fil ONERSTY | ENGINEERING




Registers

RO| X 64 23 31
R1| 23 10
R2| X 20 FF
30
R3| X
6 0 ‘ rA=réad from memory atpc + 1
PC| 02
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
0 110 01 00 00100011

PC Updates to 2 so what instruction will we execute next?

fil ONERSTY | ENGINEERING



Registers

RO

R1

23

R2

R3

PC

02

64 23 31
10
20 FF
30
icode b | meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB

fil ONERSTY | ENGINEERING



Registers

RO| X 64 23 31
R1] 23 10
R2| X 20 FF
30
R3] X
3 ‘ rA = read from memory at address rB
PC| 02
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
R| icode a b immediate

fil ONERSTY | ENGINEERING




Registers

RO| X 64 23 31
R1| 23 10
R2| X 20 FF
30
R3] X
3 rA = read from memory at address rB
PC| 02

/7 6 5 4 3 2 10
O 011 00 01

fil ONERSTY | ENGINEERING




Registers

R_O- 64 23 31
R1| 23 10
r2| x 20 2
30
R3| X
3 | rA = read from memory at address rB
PC| 03
7 6 5 43 2 10 RBis R1 and it stores 0x23.
0 011 00 01 So, we go location 23 in memory and

retrieve the value OxFF.
STOP. And talk to you neighbor
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icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0| rA = ~rA
1| rA = -rA
2 | TA = IrA
3 | rA = pc
6 0 | rA=read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1 Let’s look at
2 =read from memaryatnc _+ 1 this instruction
3 | JrA = read from memory at the address stored at pc + 1 now?
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’'s-complement to 0

if rA <= @setpc = rB
else increment pc as normal

fiil URNVERSITY | pNGINEERING




READ FROM MEMORY ADDRESS STORED IN RB

Registers

RO| X 63 37
R1| X 10
R2| X 20 FF
30 BB
R3| X
i - What are the values of RO. Once program completes?

fil ONERSTY | ENGINEERING




Registers

ROl X 63 37
R1[ X 10
R2| X 20 FF
30 BB
R3| X
6 0 | rA=read from memoryatpc + 1

PC| 00 1 | rA +=read from memory atpc + 1

2 | rA &=read from memory atpc + 1

3 | rA =read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

fil ONERSTY | ENGINEERING




Registers

ROl X 63 37
R1[ X -
R2| X 20 FF
30 BB
R3| X
3 | rA =read from memory at the address stored atpc + 1
rc| 0o For icode 6, increase pc by 2 at end of instruction
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
R| icode a b immediate

fil ONERSTY | ENGINEERING




Registers

RO| BB 63 37
R1[ X 10
R2| X 20 FF
30 BB
R3| X
3 | rA =read from memory at the address stored atpc + 1
ocl oo For icode 6, increase pc by 2 at end of instruction
7 6 5 4 3 2 10 /7 6 5 4 3 2 10
0 110 00 11 00110111

fil ONERSTY | ENGINEERING




MEMORY WRITES WORK IN A SIMILAR WAY
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REGISTER SPILLING

Because we have a limited number of registers, we can’t store all variables in registers,
so we must store some in memory and read them into a register when we need them.

Here is the strategy

1. Read the register value to a predetermined location in memory.

Use the register
Write the register value back to memory, so that it can be used to store something

else
Architecture 8 bit 32 bit 64 bit
ARM X 15 31
Intel x86 X 8 16
Toy ISA 4 X X
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REGISTER SPILLING

RO = M[0x31]

RO += 2
R1 = 0x31
M[R1] = RO

After this point RO can be
used for something else
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REGISTER SPILLING

icode b | meaning
RO = M[OXB]_] 0 rA = rB
RO += 2 1 rA += rB
R1 = 0x31 2 rA &= rB
3 rA = read from memory at address rB
M[R1] = RO 4 write rA to memory at address rB

M[RB] = RA
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RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
o M[R1] = RO Ox41
egisters
—— -ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ
63 31 61 02 64 31 41
R1| X
10
R2| X
20
R3| X 30 02
PC| 00 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING




RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
o M[R1] = RO Ox41
egisters
—— -ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ
63 31 61 02 64 31 41
R1| X
10
R2| X
20
R3| X 30 02
PC| 00 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING




RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
o M[R1] = RO Ox41
egisters
—— -ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ
63 31 61 02 64 31 41
R1| X
10
R2| X
20
R3| X 30 02
PC| 02 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING




RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
o M[R1] = RO Ox41
egisters
—— -ﬂﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂ-ﬂﬂﬂ
63 31 61 02 64 31 41
R1| 31
10
R2| X
20
R3] X 30 02
PC| 04 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING




RO = M[0x31] 0x63 0x31

RO += 2 0x61 0x02
R1 = 0x31 0x64 0x31
Registers M[R1] = RO 0x41
63 31 61 02 64 31 41
R1| 31
10
R2| X
20
R3] X 30 04
PC| 06 What are the values of RO and R1. Once program completes?

fil ONERSTY | ENGINEERING




CONDITIONAL IF ELSE

x = M[0xO0F] Memory Map 10 (Input/output)

If x > 0O:
X 4= 1
Flse: Let’s |mpler_nent this
program using our
X &= 7/

instructions
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icode b | meaning

0 rA = rB FULL ISA
rA += rB
rA &= rB

rA = read from memory at address rB
write rA to memory at address rB

gl W N -

rA = ~rA
rA = -rA
rA IrA
rA = pc

rA = read from memory atpc + 1

rA +=read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6. increase pc by 2 at end of instruction

()]
W NP OWNBEFEe O

7 Compare rA as 8-bit 2's-complement to 0
ifrA <= Osetpc = rB
else increment pc as normal
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LET’S ALLOCATE REGISTERS AND PICK

INSTRUCTIONS
x = M[OxOF] RO = M[0x20]
If x > 0: R1 = Let’s leave blank for now
X += 1 If RO <= 0 set PC= RI
Else: RO += 1
X &= 7/ RO &= 2
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LET’S CALCULATE WHERE TO JUMP TO

Memory Address Size of Instruction
0x00 RO = M[0x20] 2 Bytes
0x02 R1 = 2 Bytes
0x04 If RO <= 0 set PC= RI 1 Byte
0x05 RO#= 1 2 Bytes
0x07 RO &= 2 2 Bytes

So what address do we want R1 to be?
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LET’S CALCULATE WHERE TO JUMP TO

Memory Address Size of Instruction
0x00 RO = M[0x20] 2 Bytes
0x02 R1 = 0x07 2 Bytes
0x04 If RO <= 0 set PC= RI 1 Byte
0x05 RO#= 1 2 Bytes
0x07 RO &= 2 2 Bytes

So what address do we want R1 to be?
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LET’S CALCULATE WHERE TO JUMP TO

Memory Address
0x00 RO = M[0x20]
x = M[0x0F] 0x02 R1 = 0x07
If x> 0: :I; 0x04 If RO <= 0 set PC= Rl
x =1 0X05 RO += 1
Else: Ox07 RO &= 2
X &=

So what address do we want R1 to be?
Be really careful of the fall through case.
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LOOPS
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icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory atpc + 1

rA +=read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored atpc + 1
For icode 6, Increase pc by 2 at end of instruction

W N R OfWwIN -, O

7 Compare rA as 8-bit 2's-complement to 0
if rA <= Osetpc = rB
else increment pc as normal
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WRITE A LOOP

First, rewrite as a do-while loop. (This due to limitation in Toy ISA) reasons will be clear

later.
X = 2
X =2 i=0
for (1 = 0; 1 < 5; 1i+4+4+)/{ do {
} i+
}while (1<5)

filli UNRERSITY | ENGINEERING




WRITE A LOOP

X =2 RO = 2
i =20
do {

x+=1

4+

twhile (1<5)
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WRITE A LOOP

X = 2 RO = 2
i =0 R1 = 0
do {

x+=1

1++

twhile (1<5)
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WRITE A LOOP

% = 2 RO = 2 Store the memory address
_ of the beginning of the
v . loop : ;
o] R2 = PC
x+=1
14+

twhile (1<5)

filli UNRERSITY | ENGINEERING




WRITE A LOOP

X = 2 RO = 2
i = R1 =0
do | R2 = PC
RO += 1
x+=1
1++

twhile (1<5)
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WRITE A LOOP

X
I
N
5
|
N

i =0 R1 =0
do | R2 = PC
B RO += 1
xt=1 R1 += 1
1+

twhile (1<5)
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WRITE A LOOP

B RO = 2
X = 2

. Rl =0
1 =0 R2 = PC
do { RO += 1
x+=1 R1 += 1
i_|__|_ R3=R1
R3+= -5

}while (1<5) .
if R3 <=0 then PC = R2

But wait is that correct? }
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SEE IF YOU CAN ENCODE THIS AND RUN IT IN
THE SIMULATOR
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WRITE A LOOP

B RO = 2
X = 2

. Rl =0
1 =0 R2 = PC
do { RO += 1
x+=1 R1 += 1
i_|__|_ R3=Rl
R3+= -5

}while (1<5) .
if R3 <=0 then PC = R2

/ But wait is that correct? Translating the condition can be tricky T
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WRITE A LOOP

% = 2 RO = 2 0x60 02
. R1 =0 0x64 0x00
1 =0 R2 = PC 0X5B
do { RO += 1 0x61 0x01
x+=1 Rl += 1 0x65 0x01
144 R3 = R1 Ox0D
R3+= -4 0x6D OxFC

Jwhile (i<5) .
if R3 <=0 then PC = R2 Ox7E

-3,-2,-1,0, 1 (five times)
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Toy ISA Simulator

Choose File | no file selected

Y

00000000/00000000/OO00Q00000/ 00000000

Execute one instruction
Run 'WiIth 15

Reset

00
00

seconds between instructions

00
00
00
00

UNIVERSITY
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FROM TOY ISA TO RISC-V
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SOME PERPECTIVE (RISC-V)

The RISC-V Instruction Set Manual
Volume I: User-Level ISA
Document Version 2.2

Editors: Andrew Waterman!, Krste Asanovié!+?

1SiFive Inc.,
2CS Division, EECS Department, University of California, Berkeley
andrew@sifive.com, krste@berkeley.edu

May 7, 2017

Available at:  https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
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https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

31 25 24 20 19 15 14 12 11 76 0

| funct? [ rs2 [ sl  [funct3 | rd | opcode |R-type
| imm[11:0] | rsl  |funct3| rd | opcode |I-type
| imm[11:5] |  rs2 | rsl | funct3 | imm[4:0] | opcode | S-type
| imm[31:12] | rd | opcode |U-type

R-Format: instructions using 3 register inputs
I-Format: instructions with immediates, loads

S-Format: store instruction

U-Format: instructions with upper immediates

Detailed Data Sheet: https://www.elsevier.com/ data/assets/pdf file/0011/297533/RISC-V-Reference-Data.pdf
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https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf

RISC VS CISC

RISC-V ADD X86 Add

https://msyksphinz-self.github.io/riscv- https://www.felixcloutier.com/x86/add
isadoc/html/rvi.html#addi
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https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://msyksphinz-self.github.io/riscv-isadoc/html/rvi.html
https://www.felixcloutier.com/x86/add
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