
Instruction Set Architecture

Daniel G. Graham PhD
September 11, 2023

COMPUTER SYSTEMS
AND ORGANIZATION

Part 1

2

REVIEW

3

https://researcher111.github.io/uva-cso1-
F23-DG/lectures/TWO-Instruction-
Machine-Load-and-Add.cv

https://researcher111.github.io/uva-cso1-F23-DG/lectures/TWO-Instruction-Machine-Load-and-Add.cv
https://researcher111.github.io/uva-cso1-F23-DG/lectures/TWO-Instruction-Machine-Load-and-Add.cv
https://researcher111.github.io/uva-cso1-F23-DG/lectures/TWO-Instruction-Machine-Load-and-Add.cv

4

ARITHMETIC LOGIC UNIT
A B

N:1
MUX C

Function Code

Adder

Divider

Multiplier

AND

……

3232

32

5

ALU SYMBOL AND INPUTS

A

B

Flags example Carry Bit

Result

Function Code

6

LET’S START BY JUST DESIGNING

A MACHINE THAT LOADS VALUES

m = 1

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 1
R1 = 2
R2 = -1

We’ll map
variables to
registers

7

LET’S START BY JUST DESIGNING A MACHINE
THAT LOADS VALUES

m = 1

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 1
R1 = 2
R2 = -1

But how do we
encode this in bits
so that we can
execute it?

8

LET’S DECIDE HOW WE ARE GOING TO LAY OUT
OUR BITS

m = 1
x = 2
b = -1

1. An instruction to load values into Registers

R0 = 1
R1 = 2
R2 = -1

ValueRXXX

3-bits

Store the value to write
example 1 =001

 2 = 010
 -1 = 111

9

LET’S DECIDE HOW WE ARE GOING TO LAY OUT
OUR BITS

m = 1
x = 2
b = -1

1. An instruction to load values into Registers

R0 = 1
R1 = 2
R2 = -1

ValueR

2-bits Register
to write to

State the register to
write to
R0 = 00
R1 = 01
R2 = 10

10

LET’S DECIDE HOW WE ARE GOING TO LAY OUT
OUR BITS

m = 1
x = 2
b = -1

1. An instruction to load values into Registers

R0 = 1
R1 = 2
R2 = -1

ValueR

8 bits

XXX

3-bits
Unused

We just make
these zeros
XXX = 000

11

NOW LET’S TRANSLATE OUR PROGRAM TO
ONES AND ZEROS

m = 1

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 1

R1 = 2

R2 = -1

ValueRXXX

00100000

01001000

11110000

12

m = 1

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 1

R1 = 2

R2 = -1

ValueRXXX

00100000

01001000

11110000

NOW LET’S TRANSLATE OUR PROGRAM TO
ONES AND ZEROS

13

m = 1

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 1

R1 = 2

R2 = -1

ValueRXXX

00100000

01001000

11110000

0x01

0x0A

0x17

NOW LET’S TRANSLATE OUR PROGRAM TO
ONES AND ZEROS

14

GREAT! WE HAVE OUR FIRST INSTRUCTION

ValueRAXXX

RA = Value

15

SO, WHAT GETS LOADED INTO MEMORY

Great! So, we converted our
program to hex and loaded it into
memory.

A RD

0x01
0x0A
0x17

0x00 0x01

m = 1
x = 2
b = -1

R0 = 1
R1 = 2
R2 = -1

We still need to load our values into
Registers.

16

LET'S ADD OUR REGISTER FILE

A RD

0x01
0x0A
0x17

0x00 0x01m = 3
x = 2
b = -1

R0 = 1
R1 = 2
R2 = -1

A1 RD1

A2 RD2

A3

WD3

17

LET'S ADD OUR REGISTER FILE

A RD

0x01
0x0A
0x17

0x00

0x01

R0 = 1
R1 = 2
R2 = -1

A1 RD1

A2 RD2

A3

WD3

00100000

2

8
8

3

WE

1

00

001

18

LET'S ADD OUR REGISTER FILE

A RD

0x01
0x0A
0x17

0x01

0x0A

R0 = 1
R1 = 2
R2 = -1

A1 RD1

A2 RD2

A3

WD3

01001000

2

8
8

3

WE

1

01

010

19

LET'S ADD OUR REGISTER FILE

A RD

0x01
0x0A
0x17

0x02

0x17

R0 = 1
R1 = 2
R2 = -1

A1 RD1

A2 RD2

A3

WD3

11110000

2

8
8

3

WE

1

10

111

20

HOW CAN WE

AUTOMATICALLY CHANGE THE ADDRESS WITH

EVERY CLOCK CYCLE?

21

+

1

Next-PC

CLK

8 8

n-bit PC

8
-bit R

eg

A RD

0x01
0x0A
0x17

8 8

AUTOMATICALLY FETCH A NEW INSTRUCTION

EVERY CLOCK CYCLE

CLK

0x01

22

+

1

CLK

8 8

8-bit PC

8-bit R
eg

A RD

0x01
0x0A
0x17

8 8

NOW LET’S ADD OUR REGISTER FILE

CLK

0x01

A1 RD1

A2 RD2

A3

WD3

00100000

2
3

WE

1

23

+

1

CLK

8 8

8-bit PC

8
-bit R

eg

A RD

0x01
0x0A
0x17

8 8

CLK

0x01

A1 RD1

A2 RD2

A3

WD3

00100000

2
3

WE

1

Our program would have loaded
values into the register file

R0 = 1
R1 = 2
R2 = -1

24

GREAT! WE LOADED THE VALUES.

WHAT ABOUT ADDITION?

25

y = m+x+b

An instruction to load values into Registers

R0 = 1 (contains m)
R1 = 2 (contains x)
R2 = -1 (contains b)

But how do we
encode this in bits so
that we can execute
it?

m = 1

x = 2

b = -1

R0 += R1
R0 += R2

m = m + x
m = m + b

An instruction to computation (addition)

26

+

1

CLK

8 8

8-bit PC

8-bit R
eg

A RD

0x01
0x0A
0x17

8 8

NOW LET’S ADD OUR REGISTER FILE

CLK

0x01

A1 RD1

A2 RD2

A3

WD3

00100000

2
3

WE

1

27

+

1

CLK

8 8

8-bit PC

8
-bit R

eg

A RD

0x01
0x0A
0x17

8 8

CLK

0x01

A1 RD1

A2 RD2

A3

WD3

00100000

2
3

WE

1

Our program would have loaded
values into the register file

R0 = 1
R1 = 2
R2 = -1

28

GREAT! WE LOADED THE VALUES.

WHAT ABOUT ADDITION?

29

y = m+x+b

An instruction to load values into Registers

R0 = 1 (contains m)
R1 = 2 (contains x)
R2 = -1 (contains b)

But how do we
encode this in bits so
that we can execute
it?

m = 1

x = 2

b = -1

R0 += R1
R0 += R2

m = m + x
m = m + b

An instruction to computation (addition)

30

ENCODING

y=m+x+b

Let’s multiply the values in
our Registers

R0 += R1

R0 += R2

0xA0

0xC0

XXXRA1 RB

000001 01

000001 10

31

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3

WD3

WE

XXXRA1 RB

32

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3

WD3

WE

000001 01

R0 =1
R1 = 2
R2 = -1

0x1

0x2

0x2

0x3

0x1

0x2

33

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3

WD3

WE

000001 10

R0 =3
R1 = 2
R2 = -1

3

-1

0x3

0x1

0x2

0x3

Remember
writing
just occurs
at the
edge

34

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3

WD3

WE

000001 10

R0 = 3
R1 = 2
R2 = -1

3

-1

2

3

1

2

3

-1

Remember
writing
just occurs
at the
edge

2

35

ENCODING

m = 1

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 1

R1 = 2

R2 = -1

ValueRXXX

00100000

01001000

11110000

0x01

0x0A

0x17

36

ENCODING

y=m+x+b

Let’s multiply the values in
our Registers

R0 += R1

R0 += R2

0xA0

0xC0

XXXRA1 RB

000001 01

000001 10

37

FINAL PROGRAM

0x01

0x0A

0x17

0xA0

0xC0

m = 1

x = 2

b = -1

R0 = 1

R1 = 2

R2 = -1

y=m+x+b

R0 += R1

R0 += R2

38

https://researcher111.github.io/uva-cso1-
F23-DG/lectures/TWO-Instruction-
Machine-Load-and-Add.cv

https://researcher111.github.io/uva-cso1-F23-DG/lectures/TWO-Instruction-Machine-Load-and-Add.cv
https://researcher111.github.io/uva-cso1-F23-DG/lectures/TWO-Instruction-Machine-Load-and-Add.cv
https://researcher111.github.io/uva-cso1-F23-DG/lectures/TWO-Instruction-Machine-Load-and-Add.cv

39

INSTEAD GOING INSTRUCTION BY INSTRUCTION

LET’S DESIGN THE ISA AND THE MACHINE

40

• Look at and Toy ISA that we designed

• Get comfortable encoding instructions in our Toy ISA

• Write small programs, encode them

• Run these programs in our simulator

TODAY’S LECTURE

41

TOY INSTRUCTION SET ARCHITECTURE (ISA)
The ISA defines:
1. Instructions and their layout
2. Data types
3. Registers we’ll have

How instructions are laid out in our ISA

42

ENCODING OUR FIRST INSTRUCTION

R icode a b

7 6 5 4 3 2 1 0

immediate

byte at pc byte at pc + 1

7 6 5 4 3 2 1 0

RA = RBWe’ll assign it icode (instruction code) 0

Try to encode the following instruction R0 = R1

43

ENCODING OUR FIRST INSTRUCTION

R icode a b

7 6 5 4 3 2 1 0

immediate

byte at pc byte at pc + 1

7 6 5 4 3 2 1 0

RA = RBicode 0

Try to encode the following instruction R0 = R1

0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0

0x01

44

ENCODING OUR FIRST INSTRUCTION

R icode a b

7 6 5 4 3 2 1 0

immediate

byte at pc byte at pc + 1

7 6 5 4 3 2 1 0

RA = RBicode 0

Try to encode the following instruction R0 = R1

0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0

Not used
This
instruction
is not using
a value

45

ENCODING OUR FIRST INSTRUCTION

R icode a b

7 6 5 4 3 2 1 0

immediate

byte at pc byte at pc + 1

7 6 5 4 3 2 1 0

RA = RBicode 0

Try to encode the following instruction R0 = R1

0 0 0 0 0 0 0 1

7 6 5 4 3 2 1
0 0x01

46

INSTRUCTIONS WE’LL ENCODE

icode Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

47

INSTRUCTIONS WE’LL ENCODE

icode Behavior

0 rA=rB

1 rA+=rB

Let’s do icode 1 next

48

R icode a b

7 6 5 4 3 2 1 0

immediate

byte at pc byte at pc + 1

7 6 5 4 3 2 1 0

0 0 0 1 11 0 1

7 6 5 4 3 2 1 0

0x1D

icode Behavior

1 rA+=rB

Let’s encode R3 += R1 (Remember to pay attention to the destination)

49

ACTIVITY

icode Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

Write the following instruction r2 &= r3 in hex

R icode a b

7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

50

R icode a b

7 6 5 4 3 2 1 0

immediate

byte at pc byte at pc + 1

7 6 5 4 3 2 1 0

0 0 1 0 10 11

7 6 5 4 3 2 1 0

0x2B

icode Behavior

2 rA&=rB

Let’s encode R2 &= R3 (Remember to pay attention to the destination)

51

ICODE

R icode a b

7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

Our icode is only 3 bits. Does this mean that we can only have 23 instructions?
What if the instruction doesn’t use b could repurpose it as a part of the code?
(Don’t believe this best practice, but it is our toy ISA so let’s have and be creative)

52

FUN WITH B

icode b Behavior

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

1 -------Coming Soon------

2 -------Coming Soon------

3 -------Coming Soon------

R icode a b

7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

53

PUT IT ALL TOGETHER

R icode a b

7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

icode b Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

54

CHALLENGE
Can we write a program in our Toy Machine Code, that adds two numbers?
Can we run it in the online simulator?
https://researcher111.github.io/uva-cso1-F23-DG/homework/files/toy-isa-
sim.html

https://researcher111.github.io/uva-cso1-F23-DG/homework/files/toy-isa-sim.html
https://researcher111.github.io/uva-cso1-F23-DG/homework/files/toy-isa-sim.html

55

STEP 0: WRITE PROGRAM IN PSEUDO CODE

x = 8

y = -1

z = x + y

56

Decide which variables will be stored in memory and which variables will be stored in
registers. Choose registers and memory locations.

Rewrite the program using the instructions we have

STEP 1: REGISTER ALLOCATION AND
TRANSLATION

x = 8

y = -1

z = x + y

R0 = 8

R1 = -1

R0 += R1

57

Use the ISA layout to encode the instructions

STEP 2: ENCODE INSTRUCTIONS

x = 8

y = -1

z = x + y

R0 = 8

R1 = -1

R0 += R1

R icode a b

7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

58

R icode a b

7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

icode b Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

R0 = 8

R1 = -1

R0 += R1

0 110 00 00 0 0 0 0 1 0 0 0

0x60 0x08

59

R icode a b

7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

icode b Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

R0 = 8

R1 = -1

R0 += R1

0 110 01 00 1 1 1 1 1 1 1 1

0x64 0xFF

60

R icode a b

7 6 5 4 3 2 1 0

immediate

7 6 5 4 3 2 1 0

icode b Behavior

0 rA=rB

1 rA+=rB

2 rA&=rB

6 0 rA=read from memory at pc + 1
Also written as rA = M[pc+1]

R0 = 8

R1 = -1

R0 += R1

0 001 00 01

0x11

Immediate not used

61

R0 = 8

0x60

0x08

0x64

0xFF

0x11

R1 = -1

R0 += R1

{

{

62

R0 = 8

0x60

0x08

0x64

0xFF

0x11

R1 = -1

R0 += R1

{

{
Notice that we have to
increment the Program
Counter by two for
these instructions.
Instructions that read
from the immediate,
like icode 6, are two
bytes long while the
other instructions are
only 1 byte.

63

THE FLOW

0x60 0x08 0x64 0xFF 0x11

R0 = 8 (08)

R1 = -1 (FF)

R0 += R1

(R0 is now 07)

x = 8

y = -1

z = x + y

64

65

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

