
Instruction Set Architecture
Daniel G. Graham PhD

September 11, 2023

COMPUTER SYSTEMS
AND ORGANIZATION

 Part 1

2

REVIEW

3

THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

4

MEMORY COMPONENTS OF A PROCESSOR

32 32

CLK

A
Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

RD

Register
File

32

PCPCNext
5

5

32

32

32

32

A RD
Data

Memory
WD

WE

CLK

32

32

32

5

CLK

5

• To track where we are in a program

PROGRAM COUNTER

CLK

D1 Q1D0 Q0 Dn Qn

…

n-bit Register

+
1

PCNext PC

CLK

n n

n-bit PC

n-bit Reg

6

• Temporary storage location
• Stores immediately needed variables
• External interface

• Addresses: A1, A2, A3
• Data: RD1, RD2, WD3
• Enable: WE3
• Clock: CLK

REGISTER FILE

7

READ FROM A REGISTER FILE

Din
Doutn n

Din
Dout

n n

Din
Dout

n n

Din
Dout

n n

Reg 0

Reg 1

Reg 2

Reg 3

n4:1
MUX

A1

2

RD1

D

D

D

D

8

WRITE TO A REGISTER FILE
Dout

n

n

CLK

Doutn

Dout
n

Doutn

Reg 0

Reg 1

Reg 2

Reg 3

D

D

D

D

WE

WD

1:4
DEMUX

A3
2

9

Simultaneously read from two registers and
write into one register
Components:
1. Multiplexers
2. Registers
3. Demultiplexers

32 32-BIT REGISTER FILE

10

• Stores the program

Ø Read data (RD) for a given address (A)

INSTRUCTION MEMORY

For this class, we will assume we cannot write to Instruction Memory.

11

• Contains data needed by the program

Ø Read data (RD) from a given address (A)
Ø Write data (WD) to a given address (A)

DATA MEMORY

TODAYS LECTURE

12

13

• Introduce the Athematic Logic Unit (ALU)
• Combine components to build a simple machine.
• Introduce Instruction Set Architectures.

– What is instruction set architecture?
• Begin discussing our Toy Instruction set architecture.

TODAYS LECTURE

14

ARITHMETIC LOGIC UNIT
A B

N:1
MUX C

Function Code

Adder

Divider

Multiplier

AND

……

3232

32

15

ALU SYMBOL AND INPUTS

A

B

Flags example Carry Bit

Result

Function Code

16

Let’s write a program that multiplies three numbers.

m = 3
x = 2
b = -1
y = m*x*b

Now let’s design a processor that can run this program?
First need to convert this program into instruction that processor can execute.

TINY PROGRAM LANGUAGE

17

TINY PROGRAM TO ASSEMBLY

m = 4
x = 2
b = -1
y = m*x*b

Looks like we need two types on
instructions

1. An instruction to load values
2. An instruction to computation

(multiply)

18

LET’S START BY JUST DESIGN A MACHINE THAT
LOADS VALUES

19

LET’S START BY JUST DESIGN A MACHINE THAT
LOADS VALUES

m = 3
x = 2
b = -1

1. An instruction to load values into Registers

R0 = 3
R1 = 2
R2 = -1

We’ll map
variables to
registers

20

LET’S START BY JUST DESIGN A MACHINE THAT
LOADS VALUES

m = 3
x = 2
b = -1

1. An instruction to load values into Registers

R0 = 3
R1 = 2
R2 = -1

But how do encode
this in bits so that we
can execute it.

21

LET’S DECIDE HOW WE ARE GOING TO LAYOUT
OUR BITS

m = 3
x = 2
b = -1

1. An instruction to load values into Registers

R0 = 3
R1 = 2
R2 = -1

ValueRXXX

3-bits

Store the value to write
example 3 =011
 2 = 010
 -1 = 111

22

LET’S DECIDE HOW WE ARE GOING TO LAYOUT
OUR BITS

m = 3
x = 2
b = -1

1. An instruction to load values into Registers

R0 = 3
R1 = 2
R2 = -1

ValueR

2-bits Register
to write to

State the register to
write to
R0 = 00
R1 = 01
R2 = 10

23

LET’S DECIDE HOW WE ARE GOING TO LAYOUT
OUR BITS

m = 3
x = 2
b = -1

1. An instruction to load values into Registers

R0 =3
R1 = 2
R2 = -1

ValueR

8 bits

XXX

3-bits Unused

We just make
these zeros
XXX = 000

24

NOW LET’S TRANSLATE OUT PROGRAM TO
ONES AND ZERO

m = 4

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

ValueRXXX

01100000

01001000

11110000

25

NOW LET’S TRANSLATE OUT PROGRAM TO
ONES AND ZERO

m = 4

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

ValueRXXX

01100000

01001000

11110000

26

NOW LET’S TRANSLATE OUT PROGRAM TO
ONES AND ZERO

m = 4

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

ValueRXXX

01100000

01001000

11110000

0x03

0x0A

0x17

27

GREAT WE HAVE OUR FIRST INSTRUCTION

ValueRAXXX

RA = Value

28

SO WHAT GET LOADED INTO MEMORY

0x03 0x0A 0x17

Here is our program let’s load it into
memory

Instruction
Memory

A RD

29

SO WHAT GET LOADED INTO MEMORY
Here is our program let’s load it into
memory

Let’s assume that
Instruction Memory
reads one byte at a time.

A RD

0x03
0x0A
0x17

0x00 0x03
8 8

30

SO WHAT GET LOADED INTO MEMORY
Here is our program. let’s load it
into memory

A RD

0x03
0x0A
0x17

0x01 0x0A

31

SO WHAT GET LOADED INTO MEMORY
Here is our program. let’s load it
into memory

A RD

0x03
0x0A
0x17

0x02 0x17

32

SO WHAT GETS LOADED INTO MEMORY
Great so we convert our program to
hex and loaded it into memory

A RD

0x03
0x0A
0x17

0x00 0x03m = 3
x = 2
b = -1

R0 =3
R1 = 2
R2 = -1

We still need to load our values into
registers

33

LETS ADD OUR REGISTER FILE

A RD

0x03
0x0A
0x17

0x00 0x03m = 3
x = 2
b = -1

R0 =3
R1 = 2
R2 = -1

A1 RD1

A2 RD2
A3
WD3

34

LETS ADD OUR REGISTER FILE

A RD

0x03
0x0A
0x17

0x00

0x03

R0 =3
R1 = 2
R2 = -1

A1 RD1

A2 RD2
A3
WD3

01100000

2

8
8

3

WE

1

00
011

35

LETS ADD OUR REGISTER FILE

A RD

0x03
0x0A
0x17

0x01

0x0A

R0 =3
R1 = 2
R2 = -1

A1 RD1

A2 RD2
A3
WD3

01001000

2

8
8

3

WE

1

01
010

36

LETS ADD OUR REGISTER FILE

A RD

0x03
0x0A
0x17

0x02

0x17

R0 =3
R1 = 2
R2 = -1

A1 RD1

A2 RD2
A3
WD3

11110000

2

8
8

3

WE

1

10
111

37

HOW CAN WE
AUTOMATICALLY CHANGE THE ADDRESS WITH

EVERY CLOCK CYCLE

38

+
1

PCNext

CLK

8 8

n-bit PC

8-bit Reg

A RD

0x03
0x0A
0x17

8 8

AUTOMATICALLY FETCH A NEW INSTRUCTION
EVERY CLOCK CYCLE

CLK

0x03

39

+
1

PCNext

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
0x0A
0x17

8 8

AUTOMATICALLY FETCH A NEW INSTRUCTION
EVERY CLOCK CYCLE

CLK

0x0A

40

+
1

PCNext

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
0x0A
0x17

8 8

AUTOMATICALLY FETCH A NEW INSTRUCTION
EVERY CLOCK CYCLE

CLK

0x17

41

+
1

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
0x0A
0x17

8 8

NOW LET’S ADD OUR REGISTER FILE

CLK

0x03

A1 RD1

A2 RD2
A3
WD3

01100000

2
3

WE

1

42

+
1

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
0x0A
0x17

8 8

CLK

0x03

A1 RD1

A2 RD2
A3
WD3

01100000

2
3

WE

1

Our program would have loaded
values into the register file

R0 =3
R1 = 2
R2 = -1

43

GREAT WE LOADED THE VALUES WHAT ABOUT
MULTIPLICATION

44

y = m*x*b

An instruction to load values into Registers

R0 = 3 (contains m)
R1 = 2 (contains x)
R2 = -1 (contains b)

But how do encode
this in bits so that we
can execute it.

m = 3
x = 2
b = -1

R0 *= R1
R0 *= R2

m = m * x
m = m * b

An instruction to computation (multiply)

45

LET’S DECIDE HOW WE ARE GOING TO LAYOUT
OUR BITS

Multiply Registers

ValueRAXXX

3-bits

Don’t real need the Value bits but we need another
register so let’s use the unused bits.

y = m*x*b R0 *= R1
R0 *= R2

46

LET’S DECIDE HOW WE ARE GOING TO LAYOUT
OUR BITS

Multiply Registers

XXXRAX

2-bits

y = m*x*b R0 *= R1
R0 *= R2 RB

Let’s use some of unused bits to specify our register?

Need to be careful about which one is our destination register
Here the results get written to RA

47

OPCODE

Multiply Registers

XXXRA0

1-bit

y = m*x*b R0 *= R1
R0 *= R2

RB

Finally, we need an opcode to distinguish our load
instruction from our multiple

0 --> Multiply
1 --> Save Value
to register

48

ENCODING

y=m*x*b

Let’s multiply value in Registers

R0 *= R1

R0 *= R2

0x20

0x40

0x17

XXXRA0 RB

000000 01

000000 10

49

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE
A

B

Flags example Carry Bit

Result

Function Code

XXXRA0 RB

50

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE
A

B

Flags example Carry Bit

XXXRA0 RB

51

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

XXXRA0 RB

52

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

XXXRA0 RB

53

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

000000 01

R0 =3
R1 = 2
R2 = -1

0x3

0x2

0x6

0x6

0x3
0x2

54

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

000000 10

R0 = 6
R1 = 2
R2 = -1

6

-1

6

3
2

6

Remember
writing
just a
occurs at
the edge

55

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

000000 10

R0 = 6
R1 = 2
R2 = -1

6

-1

-6

6

3
2

6
-1

Remember
writing
just a
occurs at
the edge

-6

56

NOTE WE ALSO NEED TO UPDATE THE
ENCODING OF OUR LOADS

m = 4

x = 2

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

01100

01001

11110

0x83

0x8A

0x97

ValueRA1 RB

1 00

1 00

1 00

57

INSTEAD GOING INSTRUCTION BY INSTRUCTION
LET’S DESIGN THE ISA AND THE MACHINE

58

