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REVIEW
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THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V 

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V
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MEMORY COMPONENTS OF A PROCESSOR
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• To track where we are in a program
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• Temporary storage location
• Stores immediately needed variables
• External interface

• Addresses: A1, A2, A3
• Data: RD1, RD2, WD3
• Enable: WE3
• Clock: CLK

REGISTER FILE
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READ FROM A REGISTER FILE
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WRITE TO A REGISTER FILE
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Simultaneously read from two registers and 
write into one register
Components:
1. Multiplexers
2. Registers
3. Demultiplexers

32 32-BIT REGISTER FILE
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• Stores the program

Ø Read data (RD) for a given address (A)

INSTRUCTION MEMORY

For this class, we will assume we cannot write to Instruction Memory.



11

• Contains data needed by the program

Ø Read data (RD) from a given address (A)
Ø Write data (WD) to a given address (A)

DATA MEMORY



TODAYS LECTURE
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• Introduce the Athematic Logic Unit (ALU) 
• Combine components to build a simple machine. 
• Introduce Instruction Set Architectures. 

– What is instruction set architecture?
• Begin discussing our Toy Instruction set architecture. 

TODAYS LECTURE 
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ARITHMETIC LOGIC UNIT 
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ALU SYMBOL AND INPUTS

A

B

Flags example Carry Bit

Result

Function Code
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Let’s write a program that  multiplies three numbers.  

m = 3 
x = 2 
b = -1
y = m*x*b

Now let’s design a processor that can run this program?
First need to convert this program into instruction that processor can execute. 
 

TINY PROGRAM LANGUAGE
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TINY PROGRAM TO ASSEMBLY

m = 4 
x = 2 
b = -1
y = m*x*b

Looks like we need two types on 
instructions  

1. An instruction to load values
2. An instruction to computation 

(multiply)
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LET’S START BY JUST DESIGN A MACHINE THAT 
LOADS VALUES 
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LET’S START BY JUST DESIGN A MACHINE THAT 
LOADS VALUES 

m = 3 
x = 2 
b = -1

1. An instruction to load values into Registers

R0 = 3
R1 = 2
R2 = -1

We’ll map 
variables to 
registers 
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LET’S START BY JUST DESIGN A MACHINE THAT 
LOADS VALUES 

m = 3 
x = 2 
b = -1

1. An instruction to load values into Registers

R0 = 3
R1 = 2
R2 = -1

But how do encode 
this in bits so that we 
can execute it. 
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LET’S DECIDE HOW WE ARE GOING TO LAYOUT 
OUR BITS

m = 3 
x = 2 
b = -1

1. An instruction to load values into Registers

R0 = 3
R1 = 2
R2 = -1

ValueRXXX

3-bits

Store the value to write 
example 3 =011
                2 = 010
               -1 = 111 



22

LET’S DECIDE HOW WE ARE GOING TO LAYOUT 
OUR BITS

m = 3 
x = 2 
b = -1

1. An instruction to load values into Registers

R0 = 3
R1 = 2
R2 = -1

ValueR

2-bits Register  
to write to

State the register to 
write to 
R0 = 00
R1 = 01
R2 = 10
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LET’S DECIDE HOW WE ARE GOING TO LAYOUT 
OUR BITS

m = 3 
x = 2 
b = -1

1. An instruction to load values into Registers

R0 =3
R1 = 2
R2 = -1

ValueR

8 bits

XXX

3-bits Unused

We just make 
these zeros
XXX = 000
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NOW LET’S TRANSLATE OUT PROGRAM TO
ONES  AND ZERO  

m = 4 

x = 2 

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

ValueRXXX

01100000

01001000

11110000
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NOW LET’S TRANSLATE OUT PROGRAM TO
ONES  AND ZERO  

m = 4 

x = 2 

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

ValueRXXX

01100000

01001000

11110000
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NOW LET’S TRANSLATE OUT PROGRAM TO
ONES  AND ZERO  

m = 4 

x = 2 

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

ValueRXXX

01100000

01001000

11110000

0x03

0x0A

0x17



27

GREAT WE HAVE OUR FIRST INSTRUCTION

ValueRAXXX

RA = Value
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SO WHAT GET LOADED INTO MEMORY

0x03 0x0A 0x17

Here is our program let’s load it into 
memory

Instruction 
Memory

A RD
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SO WHAT GET LOADED INTO MEMORY
Here is our program let’s load it into 
memory

Let’s assume that 
Instruction Memory 
reads one byte at a time.

A RD

0x03
0x0A 
0x17

0x00 0x03
8 8
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SO WHAT GET LOADED INTO MEMORY
Here is our program. let’s load it 
into memory

A RD

0x03
0x0A 
0x17

0x01 0x0A
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SO WHAT GET LOADED INTO MEMORY
Here is our program. let’s load it 
into memory

A RD

0x03
0x0A 
0x17

0x02 0x17
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SO WHAT GETS LOADED INTO MEMORY
Great so we convert our program to 
hex and loaded it into memory

A RD

0x03
0x0A 
0x17

0x00 0x03m = 3 
x = 2 
b = -1

R0 =3
R1 = 2
R2 = -1

We still need to load our values into 
registers
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LETS ADD OUR REGISTER FILE

A RD

0x03
0x0A 
0x17

0x00 0x03m = 3 
x = 2 
b = -1

R0 =3
R1 = 2
R2 = -1

A1 RD1

A2 RD2
A3
WD3
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LETS ADD OUR REGISTER FILE

A RD

0x03
0x0A 
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R0 =3
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A1 RD1
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LETS ADD OUR REGISTER FILE

A RD

0x03
0x0A 
0x17

0x01

0x0A

R0 =3
R1 = 2
R2 = -1

A1 RD1

A2 RD2
A3
WD3

01001000

2

8
8

3

WE

1

01
010
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LETS ADD OUR REGISTER FILE

A RD

0x03
0x0A 
0x17

0x02

0x17

R0 =3
R1 = 2
R2 = -1

A1 RD1

A2 RD2
A3
WD3

11110000

2

8
8

3

WE

1

10
111
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HOW CAN WE 
AUTOMATICALLY CHANGE THE ADDRESS WITH 

EVERY CLOCK CYCLE 
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PCNext
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+
1

PCNext

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
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0x17

8 8

AUTOMATICALLY FETCH A NEW INSTRUCTION 
EVERY CLOCK CYCLE 

CLK

0x0A
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+
1

PCNext

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
0x0A 
0x17

8 8

AUTOMATICALLY FETCH A NEW INSTRUCTION 
EVERY CLOCK CYCLE 

CLK

0x17
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+
1

CLK

8 8

8-bit PC

8-bit Reg

A RD

0x03
0x0A 
0x17

8 8

NOW LET’S ADD OUR REGISTER FILE
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+
1

CLK

8 8

8-bit PC

8-bit Reg

A RD
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8 8

CLK
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01100000

2
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WE

1

Our program would have loaded 
values into the register file

R0 =3
R1 = 2
R2 = -1
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GREAT WE LOADED THE VALUES WHAT ABOUT 
MULTIPLICATION 
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y = m*x*b

An instruction to load values into Registers

R0 = 3 (contains m)
R1 = 2 (contains x)
R2 = -1 (contains b)

But how do encode 
this in bits so that we 
can execute it. 

m = 3 
x = 2 
b = -1

R0 *=  R1
R0 *=  R2

m = m * x
m = m * b 

An instruction to computation (multiply)
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LET’S DECIDE HOW WE ARE GOING TO LAYOUT 
OUR BITS

Multiply Registers

ValueRAXXX

3-bits

Don’t real need the Value bits but we need another 
register  so let’s use the unused bits. 

y = m*x*b R0 *=  R1
R0 *=  R2
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LET’S DECIDE HOW WE ARE GOING TO LAYOUT 
OUR BITS

Multiply Registers

XXXRAX

2-bits

y = m*x*b R0 *=  R1
R0 *=  R2 RB

Let’s use some of unused bits to specify our register?

Need to be careful about which one is our destination register
Here the results get written to RA
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OPCODE

Multiply Registers

XXXRA0

1-bit

y = m*x*b R0 *=  R1
R0 *=  R2

RB

Finally, we need an opcode to distinguish our load 
instruction from our multiple 

0 --> Multiply
1 --> Save Value 
to register  
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ENCODING

y=m*x*b

Let’s multiply value in Registers

R0 *=  R1

R0 *=  R2

0x20

0x40

0x17

XXXRA0 RB

000000 01

000000 10
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BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE
A

B

Flags example Carry Bit

Result

Function Code

XXXRA0 RB



50

BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE
A

B

Flags example Carry Bit

XXXRA0 RB
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BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

XXXRA0 RB
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BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

XXXRA0 RB
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BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

000000 01

R0 =3
R1 = 2
R2 = -1

0x3

0x2

0x6

0x6

0x3
0x2
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BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

000000 10

R0 = 6
R1 = 2
R2 = -1

6

-1

6

3
2

6

Remember 
writing 
just a 
occurs at 
the edge
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BUILDING MACHINE TO COMPUTE THIS

A1 RD1

A2 RD2

A3
WD3

WE

000000 10

R0 = 6
R1 = 2
R2 = -1

6

-1

-6

6

3
2

6
-1

Remember 
writing 
just a 
occurs at 
the edge

-6
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NOTE WE ALSO NEED TO UPDATE THE 
ENCODING OF OUR LOADS

m = 4 

x = 2 

b = -1

1. An instruction to load values into Registers

R0 = 3

R1 = 2

R2 = -1

01100

01001

11110

0x83

0x8A

0x97

ValueRA1 RB

1 00

1 00

1 00
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INSTEAD GOING INSTRUCTION BY INSTRUCTION
LET’S DESIGN THE ISA AND THE MACHINE
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