
Daniel Graham

COMPUTER SYSTEMS
AND ORGANIZATION

Bitwise Operations

2

REVIEW

3

Next let’s build a full adder

S
31

A
30

B
30

S
30

A
1

B
1

S
1

A
0

B
0

S
0

C
30

C
29

C
1

C
0

C
out ++++

A
31

B
31

C
in

RIPPLE CARRY ADDER

4

How could we add 1 + (-2)

We need a way to represent negative numbers in binary.

WHAT ABOUT NEGATIVE NUMBERS

Four Bit Space
Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

How could interpret the bits as negative
numbers?

What if we decided that the top
bit should indicate that the

number was negative?

0010 = 2
1010 = -2

Sign Bit
Signed

0

1

2

3

4

5

6

7

-0

-1

-2

-3

-4

-5

-6

-7

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

8

SIGN BIT

But now we have both positive and
negative zero

Will our ripple carry adder work with this
representation?

 1 0 1 0 (-2)
+ 0 0 1 0 (2)
 1 1 0 0 (-4) <- :(doesn't work

Bias
Signed

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

What if we find the middle and
make it represent
zero? Then numbers larger
than middle will be positive and
numbers smaller than middle
with be negative

Floor((2n -1)/2) = 7

10

BIAS = FLOOR (MAX_NUM/2)

REPRESENTATION = ORIGINAL_NUMBER + BIAS

BIAS

From original number to BIAS

From BIAS to Original

BIAS = FLOOR (MAX_NUM/2)

ORIGINAL_NUMBER = REPRESENTATION - BIAS

Signed

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11

BIAS EXAMPLE

BIAS = FLOOR (MAX_NUM/2)

REPRESENTATION = ORIGINAL_NUMBER + BIAS

From original number to BIAS

Example (original 5 to biased 5)

BIAS = FLOOR (15/2) = 7

REPRESENTATION = 5 + 7 = 12 (original) = 0b1100

0b1100 maps to 5 in our bias wheel

Signed

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

12

BIAS = FLOOR (MAX_NUM/2)

REPRESENTATION = ORIGINAL_NUMBER + BIAS

BIAS

From original number to BIAS

From BIAS to Original

BIAS = FLOOR (MAX_NUM/2)

ORIGINAL_NUMBER = REPRESENTATION - BIAS

13

What is the result if we add bias representation of
+8 to –7. What is the result?

(Doesn't look like this works either).

DOES THE BIAS REPRESENTATION WORK WITH
OUR RIPPLE CARRY ADDER?

Two’s
Complement

Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

What if the top most bit
represents negative

23 22 21 20
-8 4 2 1
 1 0 0 1 = -7

15

Flip the bits and Add one

TWO COMPLEMENT

What if the top most bit
represents negative

23 22 21 20
-8 4 2 1
 1 0 0 1 = -7

16

Flip the bits and add one trick for converting
between positive and negative numbers?

What about negative to positive? Opposite process!

1. Subtract one from the binary

2. Flip the bits

Ex: -7 (0b1001) to +7 (0b0111)

1. Subtract 1 (0b1001 – 0b1 = 0b1000)

2. Flip the bits, 0b1000 --> 0b0111, which
is correct!

TWO COMPLEMENT

17

X +

WHY DOES FLIP THE BIT AND ONE WORK?

= 0

What goes in
the box?

Assume X = 11012

18

EXAM REVIEW FALL 2018

What is the result in base 10? Is it negative or
positive? Would you get the same result in decimal if
you had more bits ☺ ?

19

If the sum of two positive numbers yields a negative
result, the sum has overflowed.

If the sum of two negative numbers yields a positive
result, the sum has overflowed.

Otherwise, the sum has not overflowed.

Overflow only exists for operations on signed
numbers.

DEFINING OVERFLOW

01112

10002

+ 00012

+7

+1

-8

20

If the sum of two positive numbers yields a negative
result, the sum has overflowed.

If the sum of two negative numbers yields a positive
result, the sum has overflowed.

Otherwise, the sum has not overflowed.

Overflow only exists for operations on signed
numbers.

NOT OVERFLOW

11112

00002

+ 00012

-1

+1

1
Carry Ignored, But NOT considered
overflow. The answer is correctly zero

21

TWOS COMPLEMENT VS SIGN BIT

WRITING LONG BINARY IS NO FUN.

LET’S EXPRESS IT IN ANOTHER BASE TO MAKE IT

EASIER. DEFINITELY CHOOSE SOMETHING
LARGER THAN BASE 10

22

23

Hex Digit Decimal Binary
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

HEXADECIMAL
Convert 00101110 to hexadecimal Answer: 2E

Group them
0010 = 2
1110 = E
Final 0x2E

• Some programming languages use prefixes

• Hex: 0x

• 0x23AB = 23AB16

• Binary: 0b

• 0b1101 = 11012

24

Convert 67 to octal 27 (octal) to decimal

(23) Strange right haha

BASE 8 OCTAL

67 ÷ 8 = 8 remainder 3
8 ÷ 8 = 1 remainder 0

1 ÷ 8 = 0 remainder 1

103 (octal) to decimal

25

26

1 1 0 1 1 0 1 12

128 64 32 16 8 4 2 1

73B
0xB37

11011011

27

NEXT LECTURE

28

BITWISE AND &

11002

01102

01002

&

#python example
x = 12
y = 6
z = x & y
print(z)
#prints 4

29

BITWISE OR |

11002

01102

11102

|

#python example
x = 12
y = 6
z = x | y
print(z)
#prints 14

30

BITWISE OR XOR ^

11002

01102

10102

^

#python example
x = 12
y = 6
z = x ^ y
print(z)
#prints 10

31

BITWISE RIGHT SHIFT

11010012

00011012

>> 3

#python example
x = 105
y = x >> 3
print(y)
#prints 15

32

SIGN EXTENSIONS

With Sign Extension. (The sign bit is copied) 110002 >> 2 = 111102

110002 >> 2 = 001102 Without Sign Extension

33

LEFT SHIFT

11012

11010002

<< 3

#python example
x = 13
y = x << 3
print(y)
#prints 104

34

A left shift is equivalent to multiplying by 2

0001 << 1 = 0010 (2).

0001 << 2 = 0100 (4)

0001 << 3 = 1000 (8)

A right shift is equivalent to dividing by 2

01000 >> 1 = 0100 (4)

01000 >> 2 = 0010 (2)

01000 >> 3 = 0001 (1)

SHIFTING MULTIPLYING AND DIVIDING BY 2

35

BITWISE INVERT ~

00002

11112

~

#python example
x = 0
z = ~x
print(z)
#prints -1

36

BITWISE INVERT ~

01102

10012

~

#python example
x = 6
z = ~x
print(z)
#prints -7

37

Set the last bit of this variable 1

SETTING BITS TO 1

#python example
x = 0
x = x | 0x01
print(x)
#prints 1

00002

00012

| 00012

38

Set the third bit of x to 1

SETTING BITS TO 1

#python example
x = 0
x = x | 0x04
print(x)
#prints 4

00002

01002

| 01002

Question: What if it was already one?

39

Set the n bit of x to 1

SETTING BITS TO 1

#python example
x = 0
n = 3
x = x | (0x01 << n)
print(x)
#prints 8

00002

10002

| 00012

Question: What if it was already one?

<< n (3)

40

Flip the second bit of x. 1 => 0 and 0 => 1

FLIPPING BITS

11002

11102

^ 00102

What if the nth bit was 1 instead?

41

Flip the nth bit of x. 1 => 0 and 0 => 1

FLIPPING BITS

11002

11102

^ 00102

#python example
x = 12
n = 1
x = x ^ (0x01 << n)
print(x)
#prints 14

42

The idea of masking is that we can extract a certain
section of bits by anding.

MASKING (EXTRACTING BITS)

110111002

110100002

& 111100002

Upper 4 bits extracted

43

The idea of masking is that we can extract a certain
section of bits by anding.

MASKING (EXTRACTING BITS)

110111002

000011002

& 000011112

Lower 4 bits extracted

#python example
x = 220
mask = 0x0F
x = x & mask
print(x)
#prints 12

44

The idea of masking is that we can extract a certain
section of bits by anding.

MASKING (EXTRACTING BITS)

110111002

110100002

& 111100002

Upper 4 bits extracted

#python example
x = 220
mask = ~0x0F
x = x & mask
print(x)
#prints 208

45

We can also set multiple bits simultaneously

COMBINING

101000002

101011112

| 000011112

#python example
b = 0x0F
a = 0xA0
x = a | b
print(hex(x))
#prints 0xAF

46

Suppose you want to want to calculate the even parity
of x.

If the total amount of "1" bits is odd, the parity value
is 1, otherwise it is zero.

0010 parity bit is 1

0110 parity bit is 0

PARITY

parity = 0
repeat 32 times:
 parity ^= (x&1)
 x >>= 1

47

PARALLEL EVALUATION

Observe that xor is both transitive and associative; thus we can re-write

x0⊕x1⊕x2⊕x3⊕x4⊕x5⊕x6⊕x7

using transitivity as
x0⊕x4⊕x1⊕x5⊕x2⊕x6⊕x3⊕x7

and using associativity as
(x0⊕x4)⊕(x1⊕x5)⊕(x2⊕x6)⊕(x3⊕x7)

and then compute the contents of all the parentheses at once via
x ^ (x>>4).

48

PARALLEL EVALUATION

x0⊕x1⊕x2⊕x3⊕x4⊕x5⊕x6⊕x7
using transitivity as

x0⊕x4⊕x1⊕x5⊕x2⊕x6⊕x3⊕x7

and using associativity as
(x0⊕x4)⊕(x1⊕x5)⊕(x2⊕x6)⊕(x3⊕x7)

and then compute all at once via
x ^ (x>>4).

x ^= (x>>16)
x ^= (x>>8)
x ^= (x>>4)
x ^= (x>>2)
 x ^= (x>>1)
parity = (x & 1)

49

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Four Bit Space
	Slide 6: What if we decided that the top bit should indicate that the number was negative?
	Slide 7: Sign Bit
	Slide 8
	Slide 9: Bias
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Two’s Complement
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

