COMPUTER SYSTEMS AND ORGANIZATION Bitwise Operations

Daniel Graham

REVIEW

RIPPLE CARRY ADDER

Next let's build a full adder

WHAT ABOUT NEGATIVE NUMBERS

How could we add 1 + (-2)

We need a way to represent negative numbers in binary.

Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Unsigned	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

TЭ

Four Bit Space

How could interpret the bits as negative numbers?

What if we decided that the top bit should indicate that the number was negative?

0010 = 21010 = -2

Signed	Bits	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
-0	1000	
-1	1001	
-2	1010	
-3	1011	
-4	1100	
-5	1101	
-6	1110	
-7	1111	

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Sign Bit

SIGN BIT

But now we have both positive and negative zero

Will our ripple carry adder work with this representation?

1010 (-2) +0010 (2) 1100 (-4) <- :(doesn't work

Signed	Bits	Unsigned
bigned	2100	0
-7	0000	0
-6	0001	1
-5	0010	2
-4	0011	3
-3	0100	4
-2	0101	5
-1	0110	6
0	0111	7
1	1000	8
2	1001	9
3	1010	10
4	1011	11
5	1100	12
6	1101	13
7	1110	14
8	1111	15

as

What if we find the middle and make it represent zero? Then numbers larger than middle will be positive and numbers smaller than middle with be negative

 $Floor((2^{n} - 1)/2) = 7$

Signed	Bits
-7	0000
-6	0001
-5	0010
-4	0011
-3	0100
-2	0101
-1	0110
0	0111
1	1000
2	1001
3	1010
4	1011
5	1100
6	1101
7	1110
8	1111

From original number to BIAS

BIAS = FLOOR (MAX_NUM/2) REPRESENTATION = ORIGINAL_NUMBER + BIAS

From BIAS to Original

BIAS = FLOOR (MAX_NUM/2) ORIGINAL_NUMBER = REPRESENTATION - BIAS

Signed
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

BIAS EXAMPLE

From original number to BIAS

BIAS = FLOOR (MAX_NUM/2) REPRESENTATION = ORIGINAL_NUMBER + BIAS

Example (original 5 to biased 5)

BIAS = FLOOR (15/2) = 7REPRESENTATION = 5 + 7 = 12 (original) = 0b1100 0b1100 maps to 5 in our bias wheel

BIAS

From original number to BIAS

BIAS = FLOOR (MAX_NUM/2) REPRESENTATION = ORIGINAL_NUMBER + BIAS

From BIAS to Original

BIAS = FLOOR (MAX_NUM/2) ORIGINAL_NUMBER = REPRESENTATION - BIAS

DOES THE BIAS REPRESENTATION WORK WITH OUR RIPPLE CARRY ADDER?

What is the result if we add bias representation of +8 to -7. What is the result?

(Doesn't look like this works either).

Signed	Bits	Unsigned
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
-8	1000	8
-7	1001	9
-6	1010	10
-5	1011	11
-4	1100	12
-3	1101	13
-2	1110	14
-1	1111	15

Two's
Complement

What if the top most bit represents negative

2 ³	2 ²	2 ¹	2 ⁰
-8	4	2	1
1	0	0	1 = -7

TWO COMPLEMENT

What if the top most bit represents negative

Flip the bits and Add one

TWO COMPLEMENT

Flip the bits and add one trick for converting between positive and negative numbers?

What about negative to positive? Opposite process!

- 1. Subtract one from the binary
- 2. Flip the bits

Ex: -7 (0b1001) to +7 (0b0111)

- 1. Subtract 1 (0b1001-0b1=0b1000)
- Flip the bits, 0b1000 --> 0b0111, which is correct!

WHY DOES FLIP THE BIT AND ONE WORK?

Assume $X = 1101_{2}$

EXAM REVIEW FALL 2018

The following assume 8-bit 2's-complement numbers. For each number, bit 0 is the low-order bit, bit 7 is the high-order bit.

Question 2 [2 pt]: (see above) Complete the following sum, showing your work (carry bits, etc)

What is the result in base 10? Is it negative or positive? Would you get the same result in decimal if you had more bits ⁽³⁾?

DEFINING OVERFLOW

If the sum of **two positive numbers** yields a **negative result**, the sum has **overflowed**.

If the sum of **two negative numbers** yields **a positive result**, the sum has **overflowed**.

Otherwise, the sum has not overflowed.

Overflow only exists for operations on signed numbers.

0111₂ +⁷ + 0001₂ +¹ 1000₂ -8

NOT OVERFLOW

If the sum of **two positive numbers** yields a **negative result**, the sum has **overflowed**.

If the sum of **two negative numbers** yields **a positive result**, the sum has **overflowed**.

Otherwise, the sum has not overflowed.

Overflow only exists for operations on signed numbers.

Carry Ignored, But NOT considered overflow. The answer is correctly zero

TWOS COMPLEMENT VS SIGN BIT

WRITING LONG BINARY IS NO FUN. LET'S EXPRESS IT IN ANOTHER BASE TO MAKE IT EASIER. DEFINITELY CHOOSE SOMETHING LARGER THAN BASE 10

Hex Digit	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
А	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

HEXADECIMAL

Convert 00101110 to hexadecimal Answer: 2E

Group them 0010 = 2 1110 = E Final 0x2E

- Some programming languages use prefixes
 - Hex: 0x
 - 0x23AB = 23AB₁₆
 - Binary: Ob
 - 0b1101 = 1101₂

BASE 8 OCTAL

Convert 67 to octal

 $67 \div 8 = 8$ remainder 3 $8 \div 8 = 1$ remainder 0 $1 \div 8 = 0$ remainder 1

103 (octal) to decimal

27 (octal) to decimal

(23) Strange right haha

Page 4: Binary

4. [6 points] Convert 219 into binary.

Answer

5. [6 points] What is 0b101100110111 in hexadecimal?

Answer

Page 4: Binary

4. [6 points] Convert 219 into binary.

128 64 32 16 8 4 2 1 1 1 0 1 1 0 1 1 25. [6 points] What is 0b10110111 in hexadecimal? B 3 7 Answer 11011011

Answer 0xB37

UNIVERSITY ENGINEERING

NEXT LECTURE

BITWISE AND &

1100₂ & 0110₂ 0100₂

#python example
x = 12
y = 6
z = x & y
print(z)
#prints 4

BITWISE OR |

1100₂ 0110₂ 1110₂

#python example
x = 12
y = 6
z = x | y
print(z)
#prints 14

BITWISE OR XOR ^

1100₂ ^ 0110₂ 1010₂

#python example
x = 12
y = 6
z = x ^ y
print(z)
#prints 10

BITWISE RIGHT SHIFT

1101001₂ >> 3

0001101₂

#python example
x = 105
y = x >> 3
print(y)
#prints 15

SIGN EXTENSIONS

$$11000_2 >> 2 = 11110_2$$

With Sign Extension. (The sign bit is copied)

$11000_2 >> 2 = 00110_2$

Without Sign Extension

LEFT SHIFT

1101₂ << 3

 1101000_{2}

#python example
x = 13
y = x << 3
print(y)
#prints 104</pre>

SHIFTING MULTIPLYING AND DIVIDING BY 2

A left shift is equivalent to multiplying by 2

0001 << 1 = 0010(2).

0001 << 2 = 0100 (4)

0001 << 3 = 1000 (8)

A right shift is equivalent to dividing by 2

01000 >> 1 = 0100(4)

01000 >> 2 = 0010(2)

01000 >> 3 = 0001(1)

BITWISE INVERT ~

#python example
x = 0
z = ~x
print(z)
#prints -1

BITWISE INVERT ~

#python example	
x = 6	
z = ~x	
print(z)	
#prints -7	

SETTING BITS TO 1

Set the last bit of this variable 1

 0000_{2} 0001_{2} 0001_{2} #python example
x = 0
x = x | 0x01
print(x)
#prints 1

SETTING BITS TO 1

Set the third bit of x to 1

0000₂ 0100₂ 0100₂ #python example
x = 0
x = x | 0x04
print(x)
#prints 4

Question: What if it was already one?

SETTING BITS TO 1

Set the n bit of x to 1

00002 0001₂ << n (3) 1000_{2}

#python example
x = 0
n = 3
x = x | (0x01 << n)
print(x)
#prints 8</pre>

Question: What if it was already one?

FLIPPING BITS

Flip the second bit of x. $1 \Rightarrow 0$ and $0 \Rightarrow 1$

1100₂ ∧ 0010₂

1110₂

What if the nth bit was 1 instead?

FLIPPING BITS

Flip the **nth** bit of x. $1 \Rightarrow 0$ and $0 \Rightarrow 1$

1100₂ ∧ 0010₂

1110₂

#python example
x = 12
n = 1
x = x ^ (0x01 << n)
print(x)
#prints 14</pre>

MASKING (EXTRACTING BITS)

The idea of masking is that we can extract a certain section of bits by anding.

11011100₂ & 11110000₂

Upper 4 bits extracted

MASKING (EXTRACTING BITS)

The idea of masking is that we can extract a certain section of bits by anding.

11011100₂ & 00001111₂

Lower 4 bits extracted

MASKING (EXTRACTING BITS)

The idea of masking is that we can extract a certain section of bits by anding.

 11011100_{2} $\& 11110000_{2}$

#python example
x = 220
mask = ~0x0F
x = x & mask
print(x)
#prints 208

Upper 4 bits extracted

COMBINING

We can also set multiple bits simultaneously

10100000₂ 00001111₂

 10101111_2

#python example
b = 0x0F
a = 0xA0
x = a | b
print(hex(x))
#prints 0xAF

PARITY

Suppose you want to want to calculate the even parity of x.

If the total amount of "1" bits is odd, the parity value is 1, otherwise it is zero.

0010 parity bit is 1 0110 parity bit is 0 parity = 0
repeat 32 times:
 parity ^= (x&1)
 x >>= 1

PARALLEL EVALUATION

Observe that xor is both transitive and associative; thus we can re-write

 $x0 \oplus x1 \oplus x2 \oplus x3 \oplus x4 \oplus x5 \oplus x6 \oplus x7$

using transitivity as x0⊕x4⊕x1⊕x5⊕x2⊕x6⊕x3⊕x7

and using associativity as $(x0 \oplus x4) \oplus (x1 \oplus x5) \oplus (x2 \oplus x6) \oplus (x3 \oplus x7)$

and then compute the contents of all the parentheses at once via x ^ (x>>4).

PARALLEL EVALUATION

x0 \oplus x1 \oplus x2 \oplus x3 \oplus x4 \oplus x5 \oplus x6 \oplus x7 using transitivity as

 $x0 \oplus x4 \oplus x1 \oplus x5 \oplus x2 \oplus x6 \oplus x3 \oplus x7$

and using associativity as $(x0 \oplus x4) \oplus (x1 \oplus x5) \oplus (x2 \oplus x6) \oplus (x3 \oplus x7)$

and then compute all at once via x ^ (x>>4).

x ^= (x>>16) x ^= (x>>8) x ^= (x>>4) x ^= (x>>2) x ^= (x>>1) parity = (x & 1)

