COMPUTER SYSTEMS AND ORGANIZATION Part 1

Daniel Graham

REVIEW

THE IDEA

THE CHALLENGE

Our gates only support 0 and 1s.

How can we represent other decimal numbers?

How can we present negative numbers?

What about fractions \odot ?

DECIMAL

- Decimal numbers
 - 1's column 10's column 100's column 1000's column

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$

tive	three	seven	
thousands	hundreds	tens	

ones

BINARY

BINARY CONVERSION EXAMPLES

Convert 74 to binary = 1001010

Convert 10101 to Decimal

74 ÷ 2 = 37	remainder 0
37 ÷ 2 = 18	remainder 1
18 ÷ 2 = 9	remainder 0
9 ÷ 2 = 4	remainder 1
4 ÷ 2 = 2	remainder 0
2 ÷ 2 = 1	remainder 0
1 ÷ 2 = 1	remainder 1

4-BIT ADDER

INPUTS AND OUTPUT OF OUR ADDER

What would the input be if wanted to add 5 and 9? Notice we need to pick and order for the wires. More on this later ⁽²⁾

Which output lights would we want to light Up?

В

INPUTS AND OUTPUT OF OUR ADDER

Α

В

What if we now added 7 and 9? What would our inputs be, and which lights do we expect to light up?

ADDING

Let's start by building a half adder something that just adds two bits.

Let's build a truth table.

А	В	A + B	C.out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

We can implement A + B with an XOR gate And the C.out (Carry out) With an AND gate

ADDING

Let's start by building a half adder something that just adds two bits.

Let's build a truth table.

А	В	A + B	C.out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

We can implement A + B with an XOR gate And the C.out (Carry out) With an AND gate

ENGINEERING

← Carries

1111

HALF ADDER DEMO

https://tinyurl.com/ygpea8v4

http://www.falstad.com/circuit/circuitjs.html?ctz= CQAgjCAMB0l3BWc0FwCwCY0HYEA4cEMEIURTJy BTAWjDACgwE0QMs21KBmANj06VKGKOSZl2rMGl Z8B01sNEIGAGXAZ5vSnkphtbUQDMAhgBsAzlXJQ 1GgZJC62HEZVOXrSSAwDu9lykDRx9fWE0cIDQ8AMwTUDov1il1kcQ5PitPQB0ESiYsDyU 8GLiXlswsoQK9JrK0vzgyIMfAFkQOXAZEDR9brS2F AYOrqxKPtquQwxhoA

ADDING

Half Adder

C _{out}			,
А	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
	S C _{out}	= A ⊕ = AB	В

We can implement A + B with an XOR gate And the C.out (Carry out) With an AND gate

Half Adder			Full Adder						
C _{out}	A 	B + S			C	but	A + S	B C	'n
А	В	C _{out}	S		\mathbf{C}_{in}	А	В	C _{out}	S
0	0	0	0	-	0	0	0	0	0
0	1	0	1		0	0	1	0	1
1	0	0	1		0	1	0	0	1
1	1	1	0		0	1	1	1	0
					1	0	0	0	1
(S :	= A ⊕ E	3		1	0	1	1	0
(= AB			1	1	0	1	0
	Out	,			1	1	1	1	1
					S Co	= / _{out} = /	A ⊕ E AB +	3 ⊕ C _{in} AC _{in} +	BC _{in}

Note on special case 3 input xor. Draw the three gates. Really Two xors stacked. Full Adder

 $\begin{array}{l} \mathsf{S} & = \mathsf{A} \oplus \mathsf{B} \oplus \mathsf{C}_{\mathsf{in}} \\ \mathsf{C}_{\mathsf{out}} & = \mathsf{A}\mathsf{B} + \mathsf{A}\mathsf{C}_{\mathsf{in}} + \mathsf{B}\mathsf{C}_{\mathsf{in}} \end{array}$

C.out has been rewritten to reduce the number of gates needed.

Cout

DEMO FULL ADDER

https://tinyurl.com/2cfbbshs

http://www.falstad.com/circuit/circuitjs.html?ctz= CQAgjCAMB0l3BWc0FwCwCY0HYEA4cEMElURTJy BTAWjDACgwE1w1WNsMRPveoeAhExYgAzGIBsPB NLSSOsgd1IMA7jy6buYyBy2R14vdvFTThjROlhJlfrc qWz0rPa1uoR-p59YvGn6sYOw8-

s4OdqYY4d54eOAYCfLBSV4AsuQAnNyOIJL+eXwoR vR88WwcFc4hwWDceJRIASCN4PWt9krObcQ2oX1 eADKdMnIJg7kgAGYAhgA2AM5U5MPt5ckTFVNzS ytIhiO1YaxoE-

47C8urNaHHzcc1HfcdSQnOKYnJCpUt1uA5YzBQH OXTAnQmfgfH6DBDYVzdIxwhHSZE8SDvBiZNEYDH 5C544rCZhNO5pN5fZSrYlkf5geEgT706T2IQibhMqI IQF5VmqIA

RIPPLE CARRY ADDER

Next let's build a full adder

RIPPLE CARRY ADDER

1111	← Carries
0111	
+ <u>1011</u>	
0010	

CHALLENGE CAN WE BUILD A CIRCUIT THAT INCREMENTS A NUMBER BY ONE

Page 5: Circuits

10. [16 points] In class, we discussed a 4-bit increment circuit below that added 1 to the input.

How can we change this circuit to instead increment by 2, i.e., x += 2? Draw the new circuit below. *Note: you should not use more gates than the original circuit.*

