8 Questions redone

2. How would -0.75 be represented on a 16 -bit machine? Let's assume that we are using IEEE 754 Half-precision float, which uses a 5 -bit biased exponent. (The format for IEEE 754 is sign bit, exponent bit, and then mantissa).
(A) $0 \times \mathrm{B} 99 \mathrm{~A}$
(B) $0 \times \mathrm{DCDA}$
(C) $0 \times \mathrm{DCDB}$
(D) $0 \times F 400$
(E) $0 \times B A 00$
(F) $0 \times \mathrm{F} 001$
(G) None of the above
3. Assume 0 x 4 A 436 C 12 C 53281 AD (64 bit number) is stored at memory address 0 x 29 , what is the value at 0 x 2 B assuming it is stored in little endian vs big endian?
(A) Little Endian: 0×43 Big Endian: 0×81
(B) Little Endian: $0 \times 6 \mathrm{C}$ Big Endian: 0×32
(C) Little Endian: 0×81 Big Endian: 0×43
(D) Little Endian: 0×32 Big Endian: 0x6C
4. Given the code:
```
typedef struct from{
    short my;
    unsigned long point;
    int ofview[10];
    char thejedi[4];
}areevil;
```

Assume a pointer to the struct is stored at memory address 0 x 40 with a value of 0 x 90 , at what memory address would ofview $[3]$ be stored? Assume no padding.
(A) $0 \times 9 \mathrm{E}$
(B) $0 \times \mathrm{A} 1$
(C) 0×112
(D) $0 \times \mathrm{A} 6$
(E) $0 \times \mathrm{A} 8$
(F) 0×106
(G) 0×108

