
CSO I Name:
Fall 2023
Exam II: Attack of the Assembly
2023-11-8
Time Limit: 50 minutes Computing ID

Instructions:

1. This exam contains 10 pages (including this cover page) and 12 questions.

2. You have 50 minutes to complete the examination.

3. Write your answers in this booklet. We scan this into GradeScope, so please try to avoid
writing on the backs of pages. Please write the answers using a pen or write darkly.

4. If a question presents several options in a list, mark the bubble next to the one correct answer.
All such questions on this test are single-select unless otherwise specified in a specific question.

5. You may not use a calculator or notes (should be obvious but needs to be said).

6. Because this assessment is being given in several places, we cannot fairly answer questions
during it. If you find a question ambiguous or unclear, please explain that on the page by
the question itself and we will consider your explanation during grading.

7. We will use the following data type sizes:
Types size in bits
char 8
short 16
int and float 32
long and double 64

8. Function arguments are in (in order) %rdi, %rsi, %rdx, %rcx, %r8, %r9; return values are
in %rax.

9. Please sign the below Honor Code statement.

I have neither given nor received aid on this exam.

Signature:

CSO I Exam II: Attack of the Assembly - Page 2 of 10 2023-11-8

1 Memory, Structs and Pointer Fundamentals
1. Consider the following layout of memory assume that variables are stored in little endian in

memory.

Registers
General-Purpose Value

EAX 0x0000000C
EBX 0x00000020
ECX 0x00200000
EDX 0x00000028
ESP 0x00000030
EBP 0x00B00000
ESI 0x00000001
EDI 0x000000FF

Main Memory Addresses
Address Code Segment Address Stack Segment
0x0010 0x00000000 0x0030 0x00000000
0x0014 0x00000004 0x0034 0x00000004
0x0018 0x00000008 0x0038 0x00000008
0x001C 0x0000000C 0x003C 0x0000000C
0x0020 0x00000010 0x0040 0x00000010
0x0024 0x00000014 0x0044 0x00000014
0x0028 0x00000018 0x0048 0x00000018
0x002C 0x00000034 0x004C 0x00000030

(a) (2 points) What is the result of executing leaq (%eax, %ebx), %ecx?
⃝ ecx = 0x0000034
√ ecx = 0x0000002C
⃝ ecx = 0x00000004
⃝ memory address 0x0000002C becomes 0x00000004
⃝ memory address 0x0000002C becomes 0x00200000

(b) (2 points) Which of the following assembly instructions would result in a segmentation
fault? (Select all that apply) ***Assume that instruction from the previous
question did not affect the state of memory. ***

⃝ leaq (%eax, %ebx, 8), %ecx
⃝ movl (%esp), %ebx
⃝ movl (%eax, %esp, 1), (%ecx)
√ movl %eax(%ebx,%esi, 8), (%edx)
⃝ none of the above

Solution: Also will when accept this answer movl (%eax, %esp, 1), (%ecx)

CSO I Exam II: Attack of the Assembly - Page 3 of 10 2023-11-8

(c) (2 points) Consider the following struct for the next two questions:
typedef struct {

char info[8]
int score;

}exam;
Which of the following are valid ways to declare a pointer to this struct?

⃝ struct exam *pointer;
⃝ struct* exam pointer;
⃝ typedef struct exam *pointer;
⃝ typedef struct* exam pointer;
√ exam *pointer;
⃝ *exam pointer;

(d) (2 points) If the pointer to struct is stored at memory location 0x04C, what is the value
of pointer->info[4] in hex? Assume that we are running on a 32-bit machine and
refer to memory layout at the beginning of this question.

0x
Solution: 0x04

2 Flags

2. (2 points) What are the value for each flag given the following information (please write a value
in the box) SF: sign flag, ZF: zero flag, OF: overflow flag, CF: carry flag

%rsi = 0x09
%rdi = 0x07
cmpq %rdi, %rsi

SF: ZF: OF: CF:

Solution:

SF: 0 ZF: 0 OF: 0 CF: 0

3. (2 points) What is the logical expression that determines if the jne branch is taken?

⃝ ~(OF ^ SF)
√ ~ZF

CSO I Exam II: Attack of the Assembly - Page 4 of 10 2023-11-8

⃝ ZF & ~OF
⃝ OF & ZF
⃝ none of the above.

CSO I Exam II: Attack of the Assembly - Page 5 of 10 2023-11-8

3 Functions and Assembly

4. (2 points) Assume a function called

AnotherBanga(calm, down, x, y, p_1, p_2, z)

Which of the following are true when the function is called. Select all that apply:
⃝ calm in %rdx and p_2 in the stack
⃝ down in %rsi and y in the %r8
√ x in %rdx and z in the stack
⃝ y in %rsi and p_1 in the %r8
⃝ x in %rsi and p_2 in the %r8

5. (2 points) What line of C code does the assembly below implement? For example return 4/x;
would be an example line

strange(int, int):
movl %edi, %eax

.L2:
testl %esi, %esi
jle .L5
addl %edi, %eax
leal -1(%esi), %esi
jmp .L2

.L5:
ret

Select the function from the list below.
⃝ return y - y * x;
⃝ return x - y * x;
⃝ return y * x;
⃝ return y * y;
⃝ return x - y * x;
√ return x + y * x;
⃝ return y / x;
⃝ return x / y;

CSO I Exam II: Attack of the Assembly - Page 6 of 10 2023-11-8

4 Compilation

6. (2 points) What is the command on the terminal to compile a file called jungle.c with two
levels of optimization that outputs an executable called a.out

⃝ clang jungle.c
⃝ clang jungle.c -o 2 a.out
√ clang -O2 jungle.c
⃝ jungle.c -o a.out 2

7. (3 points) Rearrange following lines so that they implement the visit function (i.e. visit_Constant
or visit_Add) that generates the assembly for the following line

x == 5

Here is the implementation the visit method that is run.

void visit_Compare(Node* node) {
visit(self, node->left);
visit(self, node->right);
visit(self, node->ops);

}

Also assume that we have the following functions available visit_constant which pushes
the constant onto the stack and visit_Name which looks up the value of variable and pushes
it onto the stack. ***Clearly write the line numbers in the box below so that our AI
can grade it***

1 printf("cmpq %%rdx %%rax");
2 printf("popq %%rax");
3 void visit_Eq(Node* node){
4 }
5 printf("popq %%rdx");

Solution:

3 5 2 1 4

CSO I Exam II: Attack of the Assembly - Page 7 of 10 2023-11-8

8. (6 points) Assume the following Backus-Naur Form (BNF) grammar

<expression> ::= <term> | <variable> "=" <term>
<term> ::= <factor> | <factor> "+" <term> | <factor> "-" <term>
<factor> ::= <number> | <variable> | "(" <expression> ")"
<variable> ::= "x" | "y" | "z" | "w"
<number> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Fill in the parsing tree for the following statement:

x = x + 5

We have given you a word bank below (note: not every word will be used, and words can be
used multiple times) ***Write clearly with a pen so that our AI can grade it***

expression
+
=
-

variable
factor

identifier
number

x
5

term

Figure 1: Parse tree

CSO I Exam II: Attack of the Assembly - Page 8 of 10 2023-11-8

Figure 2: solution

5 Pointers

9. (2 points) What does the following program print out when it completes

int main() {
int a = 10;
int b = 20;
int *ptrA = &a;
int *ptrB = &b;
*ptrA = *ptrA + *ptrB;
*ptrB = *ptrA - *ptrB;
*ptrA = *ptrA - *ptrB;
printf(" a = %d, b = %d\n", a, b);
return 0;

}

⃝ a = 10 b = 20
√ a = 20 b = 10
⃝ a = 30 b = 10
⃝ a = 30 b = 20
⃝ a = 20 b = 30
⃝ a = 30 b = 30
⃝ a = 10 b = 10
⃝ a = 20 b = 20

CSO I Exam II: Attack of the Assembly - Page 9 of 10 2023-11-8

⃝ a = 0 b = 0

10. (5 points) What are the following values of i, j, *k, l, and *m after the following code is
executed?

int i = 5; //i is at memory address 0x2
int j = 7; //j is at memory address 0xC
int *k = &i; //*k is at memory address 0xC0
int *l = &j; //*l is at memory address 0xC8
*k = 127;
*l = *k;
int *m = &i; //*m is at memory address 0xF0
*m = 3;
*l = *k * 5 + 9;

i: j: *k: l: *m:

Solution:

i: 3 j: 24 *k: 3 l: 0xC *m: 3

CSO I Exam II: Attack of the Assembly - Page 10 of 10 2023-11-8

11. (4 points) Consider the following snippet

int intArray[] = {1, 2, 3, 4, 5};
char charArray[] = {'o','n','e','\0'};
void *arrayPointers[2] = {intArray, charArray};

Which of the following would correctly print the third character ‘e’, from the charArray?
(Select all that apply)

√ printf("%c\n",*((char*)arrayPointers[1]+2));
⃝ printf("%c\n",(char*)(*arrayPointers[1]+2));
⃝ printf("%c\n", *(char)(*arrayPointers[1][2]));
⃝ printf("%c\n", (char*)(arrayPointers[1][2]));

12. (a) (1 point) How difficult was this exam?
⃝ too easy
⃝ easy
⃝ fair
⃝ difficult
⃝ too difficult

(b) (1 point) An Extra Credit Opportunity for Everyone
I’ll be sharing my PowerPoint slides in a OneDrive folder. For every mistake you identify
and correct, you’ll earn up to 0.1% added to your final grade, with a maximum limit of
1%. Please note that if someone identifies and corrects an error before you, you won’t be
able to claim credit for it. We’d like to hear your thoughts on this option. Depending on
your feedback, we will decide whether to keep it as an extra credit opportunity. Also, it’s
important to mention that awarding points will be at our discretion.

⃝ yes
⃝ no

